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Abstract. The increasing reach of deepfakes raises practical questions 
about people’s ability to detect false videos online. How vulnerable are 
people to deepfake videos? What technologies can help improve detec-
tion? Previous experiments that measure human deepfake detection 
historically omit a number of conditions that can exist in typical browsing 
conditions. Here, we operationalized four such conditions (low preva-
lence, brief presentation, low video quality, and divided attention), and 
found in a series of online experiments that all conditions lowered detec-
tion relative to baseline, suggesting that the current literature underesti-
mates people’s susceptibility to deepfakes. Next, we examined how AI 
assistance could be integrated into the human decision process. We found 
that a model that exposes deepfakes by amplifying artifacts increases 
detection rates, and also leads to higher rates of incorporating AI feed-
back and higher final confidence than text-based prompts. Overall, this 
suggests that visual indicators that cause distortions on fake videos may 
be effective at mitigating the impact of falsified video. 

1 Introduction 

Deepfakes are increasingly common, increasingly easy to create, and increasingly con-
vincing. “Deepfake” is the colloquial term for an image, video, or audio clip that has been 
manipulated using deep learning techniques. While they are sometimes harmless, they 
can also be used for harm, ranging from fraud, impersonation, blackmail, nonconsensual 
intimate imagery, fake news, and political propaganda. Their propagation in the modern 
information landscape raises two major practical questions. How effective are deepfake 
videos at fooling human observers? What is the best way to warn viewers about deep-
fakes, and insulate them from the false information they contain? 

Research to date suggests that humans are less susceptible to deepfake videos than 
images. Deepfake images have reached a point where they are indistinguishable from 
real images, and may even elicit higher levels of trust and social compliance (Nightingale 
and Farid 2022; Tucciarelli et al. 2022; Shen et al. 2021; Lago et al. 2021). In contrast, 
deepfake videos are still detectable at above chance levels (Groh et al. 2022; Köbis, 
Doležalová, and Soraperra 2021; Korshunov and Marcel 2021; Rossler et al. 2019; Lovato 
et al. 2022). While it is impossible to provide a single estimate of video deepfake detection 
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rates, since studies differ in their design and stimuli, a survey of recent deepfake video 
detection studies suggest average detection rates in the 65%–75% range (Groh et 
al. 2022; Rossler et al. 2019; Boyd et al. 2022; Prasad et al. 2022). 

However, it is likely that these studies overestimate a typical user’s ability to detect fake 
video. Most recent experiments use settings that can inflate detection rates: participants 
are informed about deepfakes, responses are untimed, deepfakes are abundant, or video 
streaming quality is controlled. During real-word browsing, conditions are less ideal: 
deepfakes are rare, people are distracted, video quality is variable, and videos can be 
short. All of these conditions can impair the detection of even the most obvious signals 
(Rich et al. 2008; Prasad et al. 2022). To date, there is little understanding of how human 
deepfake detection varies under more ecologically valid search conditions. Here, we 
operationalize a range of detection conditions and examine how they affect deepfake 
detection in humans. To anticipate, we find that all conditions we tested reduced the 
detectability of deepfake videos. 

Given that people are generally susceptible to fake images and videos, there is a need to 
develop methods for alerting and protecting users. Recent work has explored the effect 
of changing the motivational state of the viewer, using high-level interventions. However, 
these methods have not shown significant success: motivating participants by teaching 
them about the harms of deepfakes (Köbis, Doležalová, and Soraperra 2021), adding 
financial incentives (Köbis, Doležalová, and Soraperra 2021), or even eliciting emotional 
states (Groh et al. 2022) have all failed to affect detection rates. 

A second, emerging direction is to supplement human users with additional information 
about the video from an independent source. Specifically, recent work has suggested 
human-AI teaming, where users are given access to a computer vision model that 
specializes in deepfake detection. Pairing humans with models is an emerging possibility 
because of rapid advances in deepfake detection by machine learning models (Boyd 
et al. 2022; Groh et al. 2022; Sohrawardi et al. 2020). Most models use computer vision 
methods, detecting signs of tampering such as pixel artifacts, anomalies in the biological 
signals of the video’s subject, or inconsistencies in individual-specific features (Durall 
et al. 2019; L. Li et al. 2019; J. Li et al. 2019; Yang, Li, and Lyu 2019; H. Li et al. 2020; Li, 
Chang, and Lyu 2018; Ciftci, Demir, and Yin 2020; Matern, Riess, and Stamminger 2019; 
Boháček and Farid 2022; Agarwal et al. 2020; Haliassos et al. 2021; Cozzolino et al. 2021; 
Yang, Li, and Lyu 2019; Matern, Riess, and Stamminger 2019). Another kind of approach 
relies on authenticating a video based on its metadata, with proposals such as digital 
watermarking, blockchain-based tracking, and dataset fingerprinting (Qureshi, Megías, 
and Kuribayashi 2021; Neekhara et al. 2022; Chan et al. 2020; Alattar, Sharma, and 
Scriven 2020; Yu et al. 2021). In general, methods for automatically detecting deepfakes 
are under active development. 

So far, however, teaming humans with AI assistants has met with mixed success. Studies 
of humans paired with deepfake detection models find surprisingly low willingness to 
incorporate AI feedback. In one study, participants who had access to model suggestions 
only updated their responses 24% of the time, and only changed their mind 12% of the 
time (Groh et al. 2022). Even when models are highly accurate, people embrace them 
only some of the time: Boyd et al. (2022) found that teaming humans with a model that 
is 90% accurate only yielded final human accuracy of 63%. Thus, current approaches to 
human-AI teaming for deepfake detection have significant unrealized potential. 

How can we increase viewers’ engagement with model suggestions? In traditional 
approaches, a model’s predictions are communicated to the user using text. One 
direction for improvement may be to develop visual indicators that are more intuitive 
and compelling. Recent efforts tried showing users saliency maps of suspicious video 
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regions, but these did not improve engagement relative to text-based indicators (Boyd 
et al. 2022; Malolan, Parekh, and Kazi 2020). Here, we propose an alternate approach to 
visual indicator design, which relies on motion magnification to amplify artifacts in fake 
video (Fosco et al. 2022). 

Artifact amplification (i.e., increasing the visibility of flaws and artifacts in fake videos) 
is promising for deepfake signaling for many reasons. First, it is a highly intuitive signal. 
It targets and amplifies the same information that humans instinctively use to make 
an unassisted judgment, like the naturalness of motion and the coherence of the faces 
(Mittal, Hegde, and Memon 2022). It also targets a visual domain that humans are 
particularly attuned to. Humans are exceptionally sensitive to the proportions of faces 
(Benson and Perrett 1991; Mauro and Kubovy 1992; Farah et al. 1998; Sinha et al. 2006) 
and are highly sensitive to unnatural faces (e.g., the uncanny valley effect; Mori 1970; 
Seyama and Nagayama 2007; MacDorman et al. 2009; Kagan et al. 1966). Second, it 
is practical: videos in the current online landscape are already loaded with text and 
icons (e.g., video playback controls, social media platform watermarks, news tickers and 
crawlers, closed captions), so additional text may not be very salient. 

Here, we recruited subjects into online experiments to assess how different viewing 
conditions affect deepfake detection, and whether artifact amplification is an effective 
visual indicator. Participants performed a series of deepfake detection tasks for video 
deepfakes, where we varied the prevalence, duration, and streaming quality of deepfakes, 
as well as the user’s cognitive load. Half of the participants performed the tasks without AI 
support, allowing us to isolate and measure the effect of different viewing conditions. The 
other half had AI support in the form of artifact amplification, allowing us to measure the 
behavioral impact of artifact magnification across viewing conditions. We also compared 
artifact magnification with a more conventional visual indicator design (text on the video). 
Participants performed a deepfake detection task where an AI provided feedback on 
their responses using either motion magnification or text, and we measured the final 
accuracy and subjective confidence for each condition. 

Overall, we found that all viewing conditions we tested decreased deepfake detection 
rates relative to a baseline. In contrast, artifact magnification was highly effective 
at boosting deepfake detection and increased deepfake detection across all viewing 
conditions. Additionally, artifact amplification was more effective than text at encouraging 
users to incorporate the AI’s suggestion, leading to higher accuracy and higher confidence, 
particularly for medium- and difficult-to-detect deepfakes. Altogether, this paper makes 
two broad contributions to the science of human deepfake detection: it advances our 
understanding of the risks they pose to humans, by charting the detectability of deepfakes 
across commonly encountered browsing conditions, and explores ways to mitigate this 
risk. 

Figure 1: Methods, and conditions testing deepfake detection under typically encountered 
browser conditions. (A) Baseline procedure: participants viewed one video at a time, 
and indicated whether they thought it was real or fake. Feedback was given on each 
trial. (B) Summary of the conditions explored. The baseline procedure was modified to 
accommodate each condition; see Section 2. 



4 Journal of Online Trust and Safety (2024) 

2 Methods 

2.1 Study 1: Detectability of deepfake Caricatures 

Stimuli. Stimuli consisted of videos of single individuals. Videos were selected from the 
Deepfake Detection Challenge preview dataset (DFDC) (Dolhansky et al. 2019). Videos 
were preprocessed as described in Fosco et al. (2022): audio was removed, videos were 
cut into 12-second clips and cropped to show only one face. Each cropped clip measured 
360x360 pixels, with a minimum of a 100px margin between the edge of frame and the 
face. Next, videos were selected for the experiment as follows. 

First, we selected 300 real clips, by sampling 2–5 real video clips for different actors in 
the DFDCp. We sampled the videos to include variation in gender, race, body type, hair, 
age, and bearing. Next, we selected the corresponding deepfakes. The DFDCp features 
multiple deepfakes generated from each real video. For each of the real clips we selected, 
we retrieved all of the corresponding deepfakes, and filtered them for quality. Our goal 
was to match the quality of deepfakes in our study to the quality of deepfakes that would 
plausibly be shared online. Thus, we excluded any deepfake that contained artifacts 
for its whole duration; contained artifacts covering the whole face at any point in time; 
contained a momentary failure revealing the real face underneath; or had mismatches in 
gender, lighting, or skin tone from the underlying head and body. We additionally removed 
any deepfake that was indistinguishable from the real face it was generated from. For 
each real clip, we randomly selected one of the corresponding deepfake clips from the 
set that survived this filtering, yielding 300 real-fake pairs. 

Finally, from each of the tampered videos, a Caricature was created using the CariNet 
approach (Fosco et al. 2022). CariNet is a semi-supervised framework that predicts 
which regions in a tampered video of a face contain artifacts that are salient to human 
observers, and selectively amplifies them using motion magnification. This causes faces 
with artifacts to ripple and warp throughout the video (see Figure 3A for example frames). 
These distorted videos are called Deepfake Caricatures. The effect of the transformation 
is most compelling when viewed in video form, so we have have provided a gallery 
of fake videos with the Caricature effect applied: https://camilofosco.com/deepfake_ 
caricatures_website/gallery.html. 

Thus, our video set contained a total of 900 videos: 300 real, 300 deepfakes, and 300 
Caricatures. We calibrated our experiments to take a median of 15 minutes (in the 
Baseline condition; see below) by presenting only a subset of the videos to each individual 
subject. We divided the video set into subsets of 100 videos each: 50 real videos and 50 
fake videos (fake videos within a subset could not be generated from real videos in the 
same subset). 

Sample size estimation. Sample size was determined by estimating the number of 
participants required to gain a stable estimate of the detectability of a single video, 
based on pilot data. A pilot study was conducted with 40 participants per condition, 
using the Baseline procedure (see below). Following Strong and Alvarez (2019), we 
simulated sample sizes ranging between 10 and 200, by sampling 1,000 times with 
replacement from the pilot participants. For each sample size, we calculated the variance 
in average detectability for a given video, averaged over all videos. We identified the 
sample size at which this variance plateaus (n = 6), then doubled and rounded up to 
obtain a sample size of 15 subjects per video. 

Participants. A total of 913 people participated across all sub-experiments in Study 
1 (52% Female, 45% Male, 3% Not Reported). Participants were recruited from the 
Prolific online experiment platform (www.prolific.com). Participants were required to 
meet the following criteria: 95% approval rates or higher, a history of more than 500 

https://camilofosco.com/deepfake_caricatures_website/gallery.html
https://camilofosco.com/deepfake_caricatures_website/gallery.html
www.prolific.com
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tasks completed on the platform, and located in the US. Participants were recruited 
and compensated according to procedure approved by MIT’s Committee on the Use of 
Humans as Experimental Subjects. Participants were paid an hourly rate of $11.25 per 
hour. 

Design. There were five slightly different designs of detectability experiments, depending 
on the viewing condition being measured. 

In the Baseline condition, participants viewed one video at a time and indicated whether 
they thought the video was real or fake. Responses were not time limited, and participants 
received feedback on every trial. There were 100 trials, divided into five blocks of 20. 
The experiment started with five exposure trials, in which a 12-second deepfake video 
was displayed, but no response was required. The experiment contained five attention 
check trials, which consisted of a video with the message “this is an attention check, 
please select ‘REAL’ ” in capital letters. Real and fake videos were equally prevalent, and 
randomly intermixed. 

In the Low Prevalence condition, the same design was used, with the exception that 
only 20% of the trials contained fake videos. This design follows typical low-prevalence 
studies in the visual search literature (Rich et al. 2008; Wolfe et al. 2007; Hout et al. 2015). 
The subset of deepfakes used here were randomly sampled from the full set. 

In the Speeded Presentation condition, the Baseline condition was modified such that 
videos were only presented for 2 seconds. This value was selected by taking the median 
reaction time in the Baseline condition (2.8 s), then rounding down to yield a moderately 
challenging time limit. In order to enforce the time limit, the response screen replaced 
the video after the time limit. 

In the Divided Attention condition, participants performed a concurrent digit-counting 
task. Similar tasks have been used in driving and automobile research to elicit multi-
tasking and increase cognitive load (Yamani et al. 2018; Horrey, Wickens, and Consalus 
2006). A nine-digit string was displayed on the video itself, one digit at a time, with a 
0.45-second interval between digits. Participants were asked to count the number of odd 
digits in the string, which ranged from three to five (inclusive). Participants reported the 
number of digits after reporting their response for the video. Because this is a challenging 
task, the experiment was shortened to 50 trials. 

The Noisy Video condition was identical to the Baseline condition, with the exception 
that the videos had been manipulated to mimic compression artifacts caused by lossy 
encoding. Similar to Rössler et al. (2018), videos were compressed using a constant rate 
factor of 40 (18 is considered perceptually lossless, 23–28 is considered acceptable), 
yielding blurring and aliasing. 

Each of these viewing conditions had a deepfake version, or a Caricature version. These 
versions were presented in a between-subjects design, because we were concerned 
that including deepfakes and Caricatures in the same subject would cause criterion 
shifts. We took the following steps to reduce population effects: there were no outward 
differences between the deepfake and caricature versions until participants started 
the task, both versions of the task were released on the website at the same time, and 
condition assignment was simply determined by which link participants clicked. 

Analysis. The following preregistered procedures were used for removing low-quality 
data: any participant who failed three or more attention check trials was removed and 
replaced, and any trial that took longer than 60 seconds was dropped. For the divided 
attention condition, we additionally dropped any subject performing lower than two 
standard deviations below the mean on the digit counting task, in order to ensure they 
were devoting sufficient attention to the number task. 
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Some participants had 100% accuracy rates, especially in the Caricatures condition. 
Thus, for calculating signal detection measures, we used the method proposed in Hautus 
(1995) to calculate sensitivity and criterion in case with extreme values (.5 is added 
to the count of Hits, False Alarms, Misses, and Correct Rejections to avoid a divide by 
zero). 

Power analysis indicated that we had very high power, so we took a conservative approach 
to quantifying differences in hit rate, false alarm rate, sensitivity, and criterion from 
Baseline. Specifically, we used a Bonferroni correction where the alpha level was divided 
by the total number of statistical tests (16). Effect sizes were measured using Cohen’s 
d for two-sample designs (Lakens 2013). To compute the statistical significance of the s
sensitivity difference within each condition, for which we preregistered a hypothesis, we 
used one-sided unpaired t-test, with a Bonferroni correction such that alpha level was 
divided by the total number of tests (one for each experimental condition, 5). 

2.2 Study 2: Caricatures compared to text-based prompts 

Stimuli. Stimuli for Study 2 were a subset of those in Study 1. Deepfakes from Study 
1 were given a detectability score, which was the percent of time it was detected in 
the Baseline condition of Study 1, across all participants who viewed it. Overly easy 
and difficult deepfakes were discarded (detection rates below 20% or above 90%), and 
the remaining deepfakes were binned by difficulty: difficult (detected 0.21%–0.44% 
of the time), medium (0.44%–0.67%), and easy (0.67%–0.9%). Finally, 30 deepfakes 
were randomly selected from each bin to make up the stimulus set, as well as the 
corresponding Caricatures. To achieve 50% fake prevalence, and additional 90 real 
videos were randomly selected, with the caveat that they did not include the real videos 
corresponding to the selected deepfakes. 

Participants. Participant recruitment followed the same criteria, ethical safeguards, and 
payment rates as Experiment 1. A total of 298 people participated (47% Female, 52% 
Male, 1% Not Reported). 

Design. Our design was based on Groh et al. (2022). Participants saw one video at a time, 
and were asked to “Rate your certainty that this is a deepfake” using a slider, whose poles 
were labeled “100% confident REAL” and “100% confident FAKE.” Next, they clicked a 
button labeled “Click here to see the model’s guess,” and were shown the prediction of 
the model as either a text-based prompt or a Caricature. 

Text-based prompts were in the form “The model estimates that this video is REAL” 
(or “FAKE”). They were introduced with the text “Here is the output of the modeling 
procedure. As a reminder, our model works by estimating the likelihood that the video is 
fake, then labeling the videos it thinks are probably fake.” In the Caricatures, this screen 
displayed the same video after it had been passed through the Caricature model, which 
distorts deepfakes but leaves real videos intact. The Caricatures were introduced with 
the text “Here is the output of the modeling procedure. As a reminder, our model works 
by estimating the likelihood that the video is fake, then distorting the videos it thinks are 
probably fake.” Real-fake labels reflected the ground truth. 

This experiment included real and fake videos at 50% prevalence, and there was no time 
pressure. Participants did not receive feedback on their accuracy. There were 60 trials 
total per participant, divided into blocks of 10. There were five randomly placed catch-
trials, on which the text “This is an attention check, please set confidence to 100% Real” 
was displayed instead of the model prediction. Text-based and Caricature conditions 
were collected in a between-subjects manner. 

https://0.44%�0.67
https://0.21%�0.44
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Figure 2: Results of testing deepfake detection under typically encountered browser 
conditions. (A) Changes in hit and false alarm rates relative to baseline. Light orange box 
indicates standard error of the mean, and stars indicate significance. Baseline hit and 
false alarm rates were 0.73 and 0.28 respectively. (B) Change in sensitivity and criterion 
from baseline. Baseline values were 1.29 and -0.01 respectively. 

Data analysis. The following preregistered procedures were used for removing low-
quality data: any participant who failed three or more attention checks was removed and 
replaced, and any trial that took longer than 60 seconds was dropped. 

Four analyses were performed on this data, each using an ANOVA to test for a main 
effect of visual indicator type (text-based prompt or Caricature) or interaction between 
visual indicator type and difficulty on each of four measures of interest (if an interaction 
was present, main effects were not analyzed). There were two preplanned measures of 
interest (final confidence and final accuracy), for which we used standard p value of 0.05, 
and two post hoc measures (proportion of trials on which participants updated their 
responses, magnitude of response changes) for which we used a Bonferoni-corrected p 
value of 0.025. 

Post hoc individual differences. Single subject averages were extracted for initial accuracy 
(i.e., accuracy before model input), initial confidence (i.e., confidence level before model 
input) and AI amenabilty (i.e., the proportion of trials in which a participant updated their 
responses following model feedback). Partial correlations for the individual difference 
measures were performed using the ppcor package in R. 

3 Results 

Study 1a: Typical browsing conditions reduce deepfake detection performance 

Deepfake detection experiments with human participants typically present videos under 
conditions that are favorable for detection. However, these conditions do not reflect the 
reality of encountering a deepfake video while browsing the internet. How do deepfake 
detection rates change when we introduce conditions that can exist during an internet 
browsing session? 

We tested the detectability of deepfakes across five different viewing conditions. The 
Baseline condition used settings similar to most deepfake detection studies to date: 
participants performed an untimed detection task, where they viewed one video at a 
time and reported whether it was real or fake (Figure 1A). Half of the videos were fake 
(i.e., 50% prevalence). 

The remaining conditions operationalized some challenges that can arise in a typical 
browsing session. This included: (1) Low Prevalence, where only 20% of videos were 
deepfakes; (2) Brief Presentation, where participants were only shown two seconds of 
the video, mimicking a situation where only a brief clip of video is provided or attended 
to; (3) Divided Attention, where we simulated a case where users encounter video 
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engaging in a concurrent task (i.e., multitasking) by asking participants to perform a 
digit-counting task at the same time as the detection task; and (4) Noisy Video, where 
the video was blurred and degraded, mimicking situations where video quality is reduced 
due to compression and streaming limits (Prasad et al. 2022). These conditions targeted 
both endogenous factors under the control of the user and exogenous factors that may 
depend on the browsing session. These conditions were not designed to be perfect 
reproductions of what users might encounter during real-world browsing, but rather to 
isolate common viewing conditions, and test their effects in a controlled and measurable 
way. 

Stimuli consisted of 360-by-360px videos of faces, selected and cropped from the 
Deepfake Detection Challenge dataset preview version (Dolhansky et al. 2019; see 
Methods). There were 180 participants per experiment, for a total of 900 participants. 
Results were analyzed in a signal detection framework (Abdi 2007; Batailler et al. 2022), 
with a particular focus on hit rates (i.e., proportion correct on target-present trials), since 
this is the most direct measure of how many deepfakes were correctly detected under 
different conditions. Additionally, this avoids ambiguity that can arise from only reporting 
overall accuracy rates: overall accuracy does not distinguish whether participants were 
good at identifying which videos were fake (i.e., correct on target-present trials) or at 
confirming which videos were real (i.e., correct on target-absent trials). This distinction 
is especially important in low-prevalence settings, when a high rate of correct rejection 
can make overall accuracy high, even in the face of a low hit rate. 

Results for the detection experiments are reported in Figure 2 (and also in tabular format 
in the Appendices). In the Baseline condition, the average hit rate across participants 
was 73.3% (SEM (standard error of the mean): 1.13%), at the cost of a relatively high 
false alarm rate (28.1%). Crucially, the hit rate was reduced for all of the experimental 
conditions we examined. Low Prevalence suffered the most, with the average hit rate 
reduced to 54.8% (SEM: 1.58%), followed by Brief Presentation and Noisy Video (65.3% 
and 65.5%, SEM: 1.07% and 1.14%, respectively) and Divided Attention (67.4%, SEM: 
1.29%). All differences were significant, with effect sizes in the medium to large range 
(Low Prevalence: t(175) = 9.44, p < 0.001, d = 1.43; Brief Presentation: t(176) = 5.13,s 
p < 0.001, d = 0.77; Divided Attention: t(176) = 3.39, p < 0.001, d = 0.51; Noisy Video: s s 
t(176) = 4.78, p < 0.001, d = 0.72). Altogether, these results suggest that deepfake s
detection rates are sensitive to the conditions under which detection is occurring, and 
that detection is lowered when deepfakes are rare, when engagement with the video is 
short, when participants are distracted, or when the video is degraded. 

What accounts for the reductions in hit rates? One source of the decrease could be 
reduced sensitivity, that is, a reduction in the sensory system’s ability to detect the 
video artifacts under these viewing conditions. Another could be increased criterion, that 
is, a behavioral change causing a more conservative decision process and decreased 
willingness to say that a target (i.e., a deepfake) is present. Using signal detection theory, 
we measured sensitivity and criterion across conditions and found that the mechanism for 
the reduced hit rate differs across viewing conditions (Figure 2B). For Brief Presentation, 
Divided Attention, and Noisy Video, there is a significant decrease in sensitivity relative 
to Baseline (Brief Presentation: t(176) = 3.21, p = 0.0016, d = 0.48; Divided Attention: s 
t(176) = 3.04, p = 0.0027, d = 0.46; Noisy Video: t(176) = 9.27, p < 0.001, d = 1.39;s s
Low Prevalence: t(175) = 1.14, not significant) suggesting that the perceptual difference 
between real and fake videos is not as salient when people are rushed or distracted, 
or when the video quality is reduced. In contrast, for Low Prevalence, and to a lesser 
extent for Brief Presentation, there is a substantial increase in criterion (Low Prevalence: 
t(175) = 11.0, p < 0.001, d = 1.66; Brief Presentation: t(176) = 3.22, p = 0.0015,s
d = 0.48; Divided Attention: t(176) = 1.01, not significant; Noisy Video: p = 1.69, not s 
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significant). This suggests that participants are biased to respond “REAL” when they are 
rushed or when fake videos are rare, and require more obvious signs of tampering in 
order to overcome this bias. Taken together, different viewing conditions affect different 
dimensions of detection performance. 

So far we have discussed how individuals perform when confronted with real and fake 
videos, across a range of conditions. However, it is also valuable to understand the 
accuracy of group-level responses on individual videos. Certain fake news detection 
systems rely on crowdsourced ratings and explanations, but it is an open question 
whether consensus responses to deepfake videos are accurate and resilient to viewing 
conditions. In an exploratory analysis, we took a wisdom-of-crowds approach (Groh 
et al. 2022) to our data, and examined aggregate responses on individual videos. For 
each video, we took the majority response (“REAL” or “FAKE”) on a given video as the 
“consensus response,” and compared it to the ground truth. In the Baseline experiment, 
the consensus response was correct 84% of the time, slightly higher than previous results 
(74% and 80% in Groh et al. 2022). 

Is this aggregate performance level resilient to commonly encountered browsing con-
ditions? In keeping with the exploratory nature of this analysis, we only report effect 
sizes, using Cohen’s h, for calculating effect sizes of proportions. In general, changes 
in viewing conditions had little effect on the accuracy of the consensus response, with 
accuracies of 82%, 82%, and 80% for Low Prevalence, Brief Presentation, and Divided 
Attention, respectively (Cohen’s h: 0.05, 0.05, and 0.01, respectively). The only viewing 
condition to have an effect was Noisy Video, with a consensus performance of 72% 
(Cohen’s h: 0.3, considered small to medium). This suggests that while individual perfor-
mance is susceptible to changes in viewing conditions, aggregate measures are more 
resilient. 

Study 1b: Artifact amplification increases deepfake detectability across viewing 
conditions 

While human observers can still achieve above-chance success at detecting deepfake 
videos, this advantage may not last much longer. As deepfakes become more realistic, 
deepfake mitigation may rely on pairing the human user with a machine learning model. 
How will these models communicate their predictions to the human user? Here, we test 
the viability of using artifact amplification for indicating fake videos. 

For these studies, we used a computer vision model that detects then amplifies artifacts 
in deepfake videos (Fosco et al. 2022). In this approach, the model generates a heat 
map predicting the locations of artifacts in the input video. In addition to training on large 
sets of deepfakes, the model is semi-supervised with human annotations of artifacts, 
so these heat maps identify artifacts that are salient to people as well as machines. 
This heatmap is used to guide the application of motion magnification to frames of the 
video, yielding distorted versions of deepfakes where the faces appear to ripple and warp. 
These distorted outputs are called Deepfake Caricatures (Figure 3A). 

We first established whether making a Caricature of a deepfake improves their detectabil-
ity. A separate pool of participants (n = 180 per study, for a total of 900) were recruited 
to perform detection tasks as above, except all fake videos had been subjected to the 
Caricatures transformation. To quantify how much Caricatures facilitate detection, we 
report the difference in average sensitivity between participants viewing plain deepfakes 
(using the above data) and those viewing Caricatures, for a given detection setting. Across 
all conditions, Caricatures led to a substantial increase in sensitivity (t > 20, p < 1e-50) for 
all conditions; see Supplement for full statistical reporting). The hit rate was improved 
to 95.1% in the Baseline condition, and importantly, remained high across all other 
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Figure 3: Detectability of Deepfake Caricatures. (A) Comparison between frames of a 
deepfake video and the same video with the Caricature transformation applied. The 
amplification of motion artifacts causes the faces in Caricatures to warp and distort. 
(B) Results: top row shows the distribution of average participant sensitivity under 
different viewing conditions. Orange denotes participants who saw plain deepfakes, 
and blue denotes those who saw Caricatures. The bottom row replots the data, explicitly 
showing average participant hit and false alarm rates for deepfakes and Caricatures 
across viewing conditions. 

conditions, with hit rates of 94.9%, 94.4%, 92.6%, and 93.2% for Low Prevalence, Brief 
Presentation, Divided Attention, and Noisy Video, respectively (Figure 3B; see Supple-
ment for all signal detection measures). In all cases, the distribution of sensitivity scores 
across participants in the Caricature condition had little to no overlap with the distribution 
for participants in the Deepfake condition, indicative of very large effect sizes (Cohen’s 
d = 4.67, 4.79, 4.41, 3.41, and 4.57 for Baseline, Low Prevalence, Brief Presentation, s
Divided Attention, and Noisy Video, respectively). 

Taken together, these results show that artifact amplification is highly effective at making 
fake video distinguishable from real, and that this improvement is present across a range 
of viewing conditions. 

Study 2: Artifact amplification is more convincing than traditional text-based 
prompts 

So far, we have shown that human observers are well below the ceiling at detecting 
deepfakes, and suggested that artifact amplification is an effective way to boost the 
detectability of fake videos. However, the perceptibility of a visual indicator is only one way 
to quantify how effective it is. A crucial second measure of an indicator’s effectiveness is 
whether users find it convincing enough to accept the model’s suggestion. 

We next examined whether using text-based prompts versus artifact amplification 
changes the likelihood that a user would change their behavior based on the visual 
indicator. We measured the indicators’ impact on behavior in three ways: (1) the user’s 
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Figure 4: (A) Procedure: Participants view a video and make their responses using a slider. 
Next, they view model prediction. In the Text condition, this screen showed text that read 
“Our model estimates that this video is REAL” (or “FAKE”). In the Caricature condition, 
it showed the video with the Caricature procedure applied (this amplifies artifacts in 
fake videos, but leaves real videos intact). Then, participants could adjust their response. 
(B) Single subject confidence levels, before and after model input, for fake videos. Blue 
denotes Caricatures and purple denotes Text. (C) Average confidence and accuracy after 
model input, broken down by deepfake difficulty. Boxes show 95% CI, and lighter colors 
show responses before model input. (D) Which behavioral changes underlie increased 
confidence following Caricatures. 

average degree of confidence in their final, model-assisted response; (2) the proportion 
of time users accepted the model’s suggestion; and (3) the amount of confidence change 
participants reported on single trials. 

Following Groh et al. (2022), participants were shown a video and provided an initial 
response on a slider ranging from “100% confident REAL” to “100% confident FAKE” 
(Figure 4A). Next, participants were shown a model prediction screen, where model 
predictions were conveyed either in text (e.g., “Our model estimates that this video is 
[REAL/FAKE]”), or by displaying a Caricature of the video. Since the Caricature model 
works by detecting and amplifying artifacts in fake videos, this has the effect of distorting 
fake videos and leaving real videos intact. Predictions in this stage were not generated by 
a real model, but instead reflected ground truth, yielding a “model” performance of 100% 
accuracy. This allowed us to estimate the indicator’s impact on behavior in the best-case 
scenario of a perfect model, and to isolate the role of the visual indicator, since previous 
work has indicated that model accuracy has its own influence on behavior (Naujoks, 
Kiesel, and Neukum 2016; Sendelbach and Funk 2013; Yin, Wortman Vaughan, and 
Wallach 2019). After viewing the model prediction screen, participants were returned 
to the screen with the video and given the opportunity to update their response on the 
slider. 

We hypothesized that the difference between visual indicators might be more pronounced 
for more difficult videos, which appear more convincingly real. Thus, we included videos 
at three levels of difficulty (operationalized as their overall detectability in the Baseline 
condition of the above experiments; see Methods and Materials). Deepfakes were present 
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at a 50% prevalence, and there was no time limit for responses. Since this experiment is 
concerned with how well the different methods convince users that a video is fake, we 
discuss only target-present trials, where the video is fake. 

Figure 4B visualizes a high-level summary of participant’s behavior on target-present 
trials, graphed as the average scores assigned for the video before and after participants 
viewed model feedback. The score was registered on a 100-point scale centered on 0, 
where 0 means that participants were unsure if the video was real or fake, 50 means 
they were sure the video was fake, and -50 means they were sure the video was real. A 
first observation is that there are large between-subject differences, in both deepfake 
detection ability (shown by spread of dots in the Before condition), and in people’s 
willingness to change their behavior in response to the indicator(shown by the variety 
in slope between Before and After). Second, it is clear that both visual indicators are 
effective at changing people’s judgments of the video’s authenticity. 

To quantify the difference between text-based indicators and Caricatures, we examined 
the difference in the average confidence on After trials across difficulty levels (Figure 4C). 
Overall, confidence decreased with video difficulty, suggesting that people are more 
susceptible to challenging deepfakes, even with high-quality model support. Crucially, 
this decrease is less pronounced in the Caricatures condition: while easy trials showed no 
difference in final confidence between the two methods, medium and hard trials showed 
higher subjective confidence for Caricatures (significant interaction: F(2,798) = 3.51, 
p = 0.030). Importantly, there was no difference between Text and Caricatures in 
participants’ responses before model input (grey bars in Figure 4C). Thus, models that 
used artifact amplification to convey their prediction made people more confident in their 
model-supported decision compared to models that used text-based prompts. 

Accuracy scores were also calculated, by transforming the continuous confidence score 
into a binary response. Positive scores were translated to a “Fake” response, negative 
scores were translated to a “Real” response, and the accuracy of these binary responses 
was assessed against the ground truth. We found that accuracy scores followed the same 
pattern as confidence scores (Figure 4C): accuracy of AI-assisted responses were not 
different between Caricatures or Text for easy trials, but Caricatures led to higher accuracy 
for medium and difficult trials (significant interaction, F(2,798) = 4.63, p = 0.010). This 
illustrates how models that elicit higher subjective confidence can increase detection 
outcomes, in cases where the model is highly accurate. 

What change in user behavior underlies this increase in overall confidence? One possibility 
is that Caricatures increase the frequency with which users accept the model’s suggestion. 
Another is that the frequency remains the same, but users experience larger changes 
in confidence in the Caricatures condition. We compared these options in a follow-up 
analysis (Figure 4D), and found that the average proportion of trials in which subjects 
changed their responses was higher for Caricatures, at all levels of difficulty (significant 
main effect: F(1,798) = 17.28, p < 0.001, no interaction effect). In contrast, there was no 
difference in the magnitude of the adjustment people made following Caricatures vs. text-
based indicators (no main effect: F(1,768) = 2.208813, p = 0.14, no interaction effect; 
analyzing subset of trials where participants adjusted their responses). This suggests 
that the efficacy of Caricatures comes from their ability to make an impression more 
often, not necessarily from their ability to make a larger impression. 

Post hoc individual differences 

Given the large number of participants, and high inter-individual variation, we saw 
an opportunity for an exploratory analysis on the individual characteristics that might 
influence a user’s willingness to incorporate AI feedback. We assigned each participant 
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Figure 5: Exploratory analysis of behavioral measures that correlate with a participant’s 
AI amenability, operationalized as the proportion of trials on which they updated their 
response based on model input. We examined its relationship with participant confidence 
(before model input) and participant accuracy (before model input). Since confidence 
and accuracy are related (VIF = 11.96), we used partial correlations. There was no 
difference in the trend between Text and Caricature trials, so all data were combined for 
this analysis, but condition colors are preserved in these figures for transparency. Stars 
indicate significance. 

an AI amenability score, operationalized as the proportion of trials on which they adjusted 
their response following AI feedback, and examined what other behavioral measures 
were correlated. 

One possibility is that individuals with low AI amenability were simply the individuals 
where were better at the task: if their initial answers tended to be more correct, there 
would be no reason to engage with AI assistance. Another possibility is that low-
amenability participants were more confident in their initial response, and therefore less 
likely to adjust, even when the model indicates they were wrong. Of course, a participant’s 
confidence depends partially on their perceived accuracy in the study. Indeed, the VIF 
(variance inflation factor) between a participant’s initial accuracy (i.e., before model 
input) and their initial confidence was above 10, indicating high covariance (VIF = 11.96). 
Thus we used partial correlations to assess the relationship between AI amenability, 
and initial accuracy and confidence, respectively, while partialling out the dependence 
between initial accuracy and initial confidence. 

Overall, results (Figure 5) indicate that there is a a small but significant negative 
relationship between a participant’s initial confidence (independent of their actual 
accuracy) and their likelihood to accept the AI’s suggestion (rpartial = -0.39, p < 0.001). 
In contrast, there was no relationship between a participant’s unassisted accuracy and 
their AI amenability (rpartial = 0.012, p = 0.84). This suggests that another possible 
predictor of whether a user will successfully pair with an AI, independent of the visual 
design of the indicator, is how confident they feel about their ability to perform the task 
unassisted. Future work is required to quantify the contribution of this factor. 

4 Discussion 

Two pressing questions in today’s media landscape are how susceptible people are to 
deepfakes, and how to mitigate the risks that deepfakes pose. Here, we advance our 
understanding of both of these issues. We show that deepfake detection rates are highly 
sensitive to the conditions under which they are viewed, and are negatively impacted by 
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many of the conditions present in typical browsing sessions. We also confirm previous 
findings that pairing a human observer with a machine learning model can increase 
detection rates, but illustrate how the design of the visual indicator supplied by the 
model can affect the quality of the collaboration. 

One broad implication of these results is that the field of behavioral deepfake detection 
is overestimating people’s detection rates. There is limited value in discussing precise 
detection accuracy values, since detection rates will change as the technology improves, 
and can depend on the type of deepfake used as stimuli (Rossler et al. 2019). Instead, we 
focus on how detection rates changed when the experimental conditions varied: detection 
rates were reduced relative to baseline in every condition we tested. These results 
suggest that misinformation mitigation researchers should increase their estimates of 
people’s susceptibility to deepfakes, and the false messages they may convey. 

Additionally, we found that the specific mechanisms of this reduction varied depending on 
the viewing conditions (e.g., increased criterion vs. reduced sensitivity). This suggests that 
different conditions have independent effects, which may stack when the conditions are 
combined. A number of additional conditions that would be present during a browsing 
session were not tested here, but could be expected to further impact performance. 
Videos are sometimes viewed while scrolling, and this motion may disguise motion 
artifacts in deepfakes. Videos are often embedded in text, or near other images and 
banners, which may add clutter to the visual display. Users outside of experimental 
setting may have their own reasons for engaging with videos, and may not be as vigilant 
for flaws in the videos. More work is required to understand the full range of conditions, 
and their individual (and combined) impacts on detection rates. More broadly, it is 
useful to name and test the variety of detection conditions that exist in typical browsing 
sessions, because they have implications for how we deploy warnings about deepfakes. 
Given this variability, visual indicators for deepfake signaling should be tested under a 
variety of conditions, to ensure that they remain useful and robust across all anticipated 
conditions. 

Interestingly, our exploratory results suggest that crowd-consensus deepfake detection 
is much more robust to commonly encountered browsing conditions than individual 
detection. This suggests that techniques that rely on aggregate annotations can be 
successful even if individual judgments are less reliable. One example is the use of 
human annotation data to supervise deepfake detection models (Fosco et al. 2022; Boyd 
et al. 2022; Gupta et al. 2020). Another is the use of crowdsourcing as part of a real-time 
deepfake detection pipeline. Misinformation mitigation in some online communities 
relies on aggregating reports on content already in circulation from users themselves. 
The present results suggest that this approach could be useful for deepfakes in active 
circulation on platforms with wide and active user bases. More targeted research is 
require to confirm these exploratory results. 

A second implication of this work is that human-AI teaming, while effective, has unmet 
potential, and that the choice of visual indicator can influence users’ willingness to 
incorporate AI feedback. Our work speaks to previous studies where pairing humans 
with high-performing deepfake detection models achieved performance well below 
ceiling (Groh et al. 2022; Lai and Tan 2019; Boyd et al. 2022). These studies used model 
performance values that were high, but not perfect. This is ecological (no current model 
performs at 100% accuracy), but it introduces a confound when trying to assess how 
visual indicator design affects users’ willingness to incorporate AI feedback: people 
are less likely to cooperate with models that have made errors in the past (Naujoks, 
Kiesel, and Neukum 2016; Sendelbach and Funk 2013; Yin, Wortman Vaughan, and 
Wallach 2019). Here, we fixed model performance at 100%, which serves two roles. 
First, it allows us to observe how visual indicator design can affect behavior without 
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confounds from source reliability effects. Second, it allows for observation of willingness 
to incorporate AI feedback in the best possible scenarios. Overall, even when paired 
with a perfect model, participants achieved performance well below ceiling (64.4% for 
Caricatures, aggregated across difficulty levels). This adds to the growing literature about 
a human acceptance gap in human-AI teaming for deepfake detection. 

These results also make the case that visual indicator design is one factor in reducing this 
gap. We tested one particular kind of visual indicator, artifact amplification, and found 
that it is detectable under a variety of viewing conditions, and that it affects participants’ 
subjective impression of the video more than traditional text-based indicators. This adds 
to previous results from our group showing that artifact amplification on deepfakes is 
effective at boosting detection for both high- and low-vigilance individuals, and that it 
is effective after as little as 500ms of exposure (Fosco et al. 2022). There are several 
possible reasons that artifact amplification is so effective: it increases the amount of 
motion in the video, which humans are very perceptually attuned to, and it increases 
the subjective impression of unnaturalness as the faces change shape over time. Future 
work is required to untangle these two contributions. 

Overall, artifact amplification can be considered part of a broader family of distortion-
based visual indicators. Such visual indicators rely on the conscious, deliberate distortion 
of an image to enable visual observation of an otherwise invisible signal (Le Ngo and Phan 
2019; Śmieja et al. 2021). These have existed for some time across a number industrial 
and civil settings, as a visual aid in quality control applications. For example, motion 
amplification has been found useful for monitoring vibrations in iron pipes (Kupwade-
Patil et al. 2020) and pedestrian bridges (Shang and Shen 2018), and for visualizing the 
deformation in wind turbine blades (Sarrafi et al. 2018) and antique structures (Fioriti 
et al. 2018). Motion and color amplification has even been proposed for facilitating the 
observation of subtle physiological signals like heart rate in infants (Wu et al. 2012; 
Balakrishnan, Durand, and Guttag 2013). 

Deepfake mitigation measures have only recently begun to recognize the perceptual 
power of distortion. Some approaches actively inject human-invisible artifacts into real 
images or video, which cause any subsequent video manipulation to contain large and 
visible artifacts (Chen et al. 2021; Wang et al. 2022). We introduce a complementary, 
reactive approach, which identifies and amplifies distortions caused by the deepfake-
generation pipeline itself. Distortion-based indicators could also be applied to deepfakes 
identified via metadata-based detection methods (Qureshi, Megías, and Kuribayashi 
2021; Neekhara et al. 2022; Chan et al. 2020; Alattar, Sharma, and Scriven 2020; Yu 
et al. 2021), by injecting artifacts into the video stream. Crucially, we have empirically 
demonstrated the effectiveness of distortion-based visual indicators in deepfake miti-
gation, and this principle can be applied regardless of the method used to identify the 
deepfake. 

There are some limitations to the present work. This work uses videos that have no sound. 
This matches many viewing contexts (e.g., GIFs, platforms set to mute by default), but 
does not generalize to all contexts (e.g., long-form interviews, news broadcasts), which 
can include additional information streams, such as the quality of the audio and the 
semantic content of the speech. Such contexts open up novel research directions, such 
as testing distortion-based indicators in the audio domain. Additionally, we assessed 
the effectiveness of the visual indicator based on the accuracy and confidence achieved 
by the participants, but this only captures responses in the moment, and does not give 
insight into downstream effects of different visual indicators, such as how they affect 
memory for the videos or memory for the information they contain. 

This work also raises questions about the risks of distortion-based visual indicators 
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for deepfake signaling. While we show they are effective for signaling deepfakes in 
the moment, they may harm longer-term information literacy goals. If people only see 
distorted deepfakes, they may not learn what artifacts exist in unsignaled deepfakes. 
Widespread distribution of distortion-based visual indicators may also cause a criterion 
shift, where people become less sensitive to the subtle artifacts in regular deepfakes 
because they have become accustomed to more obvious visual distortions. 

5 Conclusion 

We demonstrate how conditions that exist during normal browsing can increase hu-
man susceptibility to deepfakes. However, we also demonstrate how human-centered 
principles can be applied to visual indicator design to increase their effectiveness. We 
leveraged people’s natural sensitivity to distortions in faces by amplifying artifacts in 
videos, and found that this method of marking fake videos was more convincing than 
text-based alerts, and led to higher accuracy. More broadly, this paper demonstrates the 
promise of integrating knowledge about what perceptual tasks are easy and automatic 
for humans into the development of visual indicators. 
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Appendices 

Appendix A: Signal detection measures for non-signaled deepfakes 
across viewing conditions 

Viewing Condition Hit Rate False Alarm Rate Sensitivity Criterion 

Baseline 0.73 0.28 1.29 −0.01 

Low Prevalence 0.55 0.16 1.19 0.48 

Brief Presentation 0.65 0.28 1.04 0.11 

Divided Attention 0.67 0.31 1.03 0.03 

Noisy Video 0.66 0.40 4.57 −0.08 

Appendix B: Complete statistical reporting of sensitivity difference 
between non-signaled deepfakes, and deepfakes signaled 
using Caricatures 

Viewing Condition t p Effect Size 

Baseline 30.08 2.50E-69 4.66 

Low Prevalence 31.86 3.14E-75 4.79 

Brief Presentation 29.62 1.00E-70 4.41 

Divided Attention 22.73 1.56E-54 3.41 

Noisy Video 22.73 9.84E-76 4.57 

Appendix C: Signal detection measures for deepfakes signaled with 
Caricatures across viewing conditions 

Viewing Condition Hit Rate False Alarm Rate Sensitivity Criterion 

Baseline 0.95 0.03 3.75 0.13 

Low Prevalence 0.95 0.02 3.85 0.22 

Brief Presentation 0.94 0.04 3.07 0.10 

Divided Attention 0.93 0.08 3.06 −0.009 

Noisy Video 0.93 0.06 3.32 0.05 

Figure 6 on the following page shows a graphical representation of differences from 
Baseline across viewing conditions for Caricatures. Light blue boxes indicates standard 
error of the mean, and stars indicate significance (post hoc Bonferroni corrected two-
sample t-test). In contrast to non-signaled deepfakes, viewing conditions only reduce hit 
rates in one case, when the viewer is distracted. 
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Figure 6 
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