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Abstract. It is said that what happens on the internet stays on the inter-
net, forever. In some cases this may be considered a feature. Reports of 
human rights violations and corporate corruption, for example, should re-
main part of the public record. In other cases, however, digital immortality 
may be considered less desirable. Most would agree that terror-related 
content, child sexual abuse material, non-consensual intimate imagery, 
and dangerous disinformation, to name a few, should not be so easily 
found online. Neither human moderation nor artificial intelligence is cur-
rently able to contend with the spread of harmful content. Perceptual 
hashing has emerged as a powerful technology to limit the redistribution 
of multimedia content (including audio, images, and video). We review 
how this technology works, its advantages and disadvantages, and how 
it has been deployed on small- to large-scale platforms. 

1 Introduction

In March 2019, a terrorist killed 51 people and injured another 40 at two mosques 
in Christchurch, New Zealand. This attack was the deadliest shooting in modern New 
Zealand history. In addition to sharing a 74-page hate-filled, anti-immigrant manifesto 
on Twitter and 8chan, the terrorist livestreamed the attack on Facebook. Both the video 
and manifesto were subsequently banned in New Zealand and Australia. 

According to Facebook, the livestream was watched by fewer than 200 viewers (Sonderby 
2019). In the 24 hours following the attack, however, Facebook removed 1.5 million 
videos of the attack, 1.2 million of which were blocked at upload (it remains unclear how 
long the other 300,000 remained online or how many times they were viewed). The video 
also circulated on other platforms including YouTube, Reddit, and Twitter. YouTube, for 
example, saw an unprecedented volume of re-upload attempts, peaking at one attempt 
per second (YouTubeInsider 2019). 

Two months after the attack, New Zealand’s Prime Minister Jacinda Ardern initiated the 
Christchurch Call to Action Summit, which aimed to “bring together countries and tech 
companies in an attempt to bring to an end the ability to use social media to organise and 
promote terrorism and violent extremism” (Ardern 2019). World leaders from 48 coun-
tries,1 along with technology companies—including Facebook, Google, Microsoft, Twitter, 
and YouTube—pledged to eliminate terrorist and violent extremist content online. 
1. The United States, under President Trump, declined to attend the summit. In May 2021, President Biden

announced the United States would join the Christchurch Call. 
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Figure 1: An overview of image hashing consisting of two primary stages: (1) an offline 
stage (upper) in which a hash is extracted from each offending reference image (sunflower, 
welder, dog); and (2) an online stage (lower) in which a hash is extracted from a query 
image (welder) at the point of upload and compared against all database hashes—any 
matched image is blocked, reviewed, reported, or subjected to whatever policy a service 
provider initiates. 

More than two years after the attack and subsequent global call to action, videos of 
the horrific Christchurch attack are still available on Facebook and other video-sharing 
platforms (Solon 2019). In the years since the March 2019 attack, social media has con-
tinued to be weaponized by extremist groups including, for example, the radicalization, 
planning, and execution of the January 6, 2021, insurrection at the US Capitol. 

These incidents highlight the challenges faced by online trust and safety teams in contend-
ing with real-world violence stemming from online behaviors. Platforms face additional 
challenges when grappling with a myriad of other abuses, including child sexual abuse 
material (CSAM), illegal sex trade, illegal drugs and weapons, dangerous disinformation 
and conspiracies, and more. Here we will focus on technologies to limit the redistribution 
of various forms of illegal, dangerous, and hateful content, with a focus on multimedia 
content (audio, image, and video). 

Hashing is arguably the most widely used technology for limiting the spread of previously 
identified multimedia content. This technology is used to contend with everything from 
terror-related content to CSAM (Farid 2018a) and copyright infringement. After an 
offending audio, image, or video is identified (either manually or automatically), a distinct 
digital signature is extracted from the content (the digital signature is often referred to 
as a fingerprint, message digest, hash value, hash code, hash sum, or, simply, hash). The 
same hash is extracted from each future upload and compared against a database of 
offending hashes (see Figure 1). Any matched content can, for example, be automatically 
blocked from upload or subjected to any policy a service provider initiates. 

The terms hash and hashing originated from the culinary term describing the process of 
chopping a mixture of ingredients to yield, for example, a hash of potatoes, peppers, and 
tomatoes. In the digital realm, hashing refers to chopping a data file into small pieces and 
combining them to yield a concise numeric value that can be used to identify the original 
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data file. Although we are discussing hashing in the context of the modern internet, 
the importance of hashing dates back to the early years of the electronic computer, the 
process having first been described in 1953 (Luhn 1953), with the term hashing first 
appearing in 1967 (Hellerman 1967). 

In the broadest use of the term, there are many applications of hashing, including efficient 
data storage and retrieval, data integrity, and data matching. We will focus on this latter 
use, and in particular the application of hashing to digital media files. 

In order to be most effective at internet scale with billions of daily uploads, an effective 
hash should have several properties: 

1. Distinct. The extracted hashes for two distinct pieces of content should themselves 
be distinct; this ensures that innocuous content is not incorrectly matched. 

2. Resilient. The extracted hash for a piece of content should be resilient to simple 
content modifications that do not fundamentally alter the underlying content; 
this ensures that perceptually similar but not identical pieces of content will be 
matched. 

3. Deterministic. The extracted hash for a piece of content is always the same; this 
ensures that a piece of content can always be identified based on its hash. 

4. Efficient. The computational cost of extracting a hash and comparing hashes 
should be low; this ensures the technology can be deployed on even the largest 
social media sites. 

5. Non-reversible. It should be practically impossible to reconstruct the original 
content from only the hash; this allows for hashes of illegal content (e.g., CSAM) to 
be shared across different organizations. 

Different flavors of hashing comply with one or more of the above five criteria, but not 
all five. Hard-hashing techniques, for example, are highly distinct but not resilient to 
even the smallest change in the underlying media file (hard hashing is also referred to 
as fingerprinting). In contrast, perceptual hashing can be resilient but is less distinct 
(perceptual hashing is also referred to as robust hashing, fuzzy hashing, or content-based 
image retrieval [CBIR]). In the next two sections, we will discuss these two classes of 
hashing: how they work, their advantages and disadvantages, and how they have been 
deployed to counter online extremism, CSAM, non-consensual intimate imagery, and 
copyright infringement. 

2 Hard Hashing 

The most widely used hard-hashing algorithms are arguably MD5 (Rivest 1992) and 
SHA-1 (Eastlake and Jones 2001), along with their variants (MD2, MD4, MD6, and SHA-0, 
SHA-2, SHA-3). The MD5 (message digest) algorithm takes as input an arbitrary data file 
and generates a 128-bit hash, typically represented as a sequence of 32 hexadecimal 
characters (hexadecimal corresponds to a base 16 alphanumeric system consisting of the 
values 0-9 and a-f [or A-F]). A simple text file containing the text “An Overview of Percep-
tual Hashing,” for example, yields the MD5 hash 7b2cc72c5a57c2d6878a9d897b21e9cd. 
The MD5 algorithm first partitions the data file into 512-bit blocks, from which a per-block 
hash is computed by manipulating the data in each block alongside the hash from the 
previous block. The final hash is generated in the final data block. 

MD5 was initially designed as a cryptographic hash with additional security features 
beyond the basic hash features described above, including that a message cannot be 



4 Journal of Online Trust and Safety 

generated to yield a specific hash and that a small change in the data file leads to a 
large and uncorrelated change in the hash (the so-called avalanche effect). Although 
these cryptographic properties were found not to hold (Wang and Yu 2005), MD5 hashing 
continues to be used for basic data integrity checks and data matching. 

Shown below is the MD5 hash of five text files, each containing a single line of text. 

MD5("Perceptual") = 4fcd92bbcf33b0b4a1eac76a673e1f33 
MD5("Perceptual Hashing") = c6eedea9b3db1e5ff9e80153dc629dcc 
MD5("An Overview of Perceptual Hashing") = 7b2cc72c5a57c2d6878a9d897b21e9cd 
MD5("an Overview of Perceptual Hashing") = 6df033f24a309e7eca6c70834d34bd2a 
MD5("xn Overview of Perceptual Hashing") = 9a87d6c846de4f2bc35a40e42bd1d4a8 

Notice first that regardless of the size of the input data file, the resulting hash consists of 
32 hexadecimal characters. Notice also that even small differences in the input file (as 
in the last three entries) lead to large and seemingly uncorrelated changes in the hash. 
As we will see later, this latter property has both advantages and disadvantages when it 
comes to identifying a piece of content based on a hash. 

Designed by the United States National Security Agency, SHA-1 (secure hash algorithm) 
takes as input an arbitrary data file and generates a 160-bit hash, typically represented 
as a sequence of 40 hexadecimal characters (Eastlake and Jones 2001). A simple text 
file containing the text “An Overview of Perceptual Hashing,” for example, yields the SHA-
1 hash b1bf46c0f558cce2ae0a23f2aa7c509e7f91301e. Like the MD5 hash, the SHA-1 
hash is of fixed size and exhibits the avalanche effect. Also like MD5, SHA-1 was initially 
designed as a cryptographic hash. Although SHA-1 was found not to be cryptographically 
secure (Wang, Yin, and Yu 2005), it continues to be used for basic data integrity checks 
and data matching. 

Both MD5 and SHA-1, among others, have been used by various platforms to identify a 
specific digital media file. Shown in Figure 1 is the basic structure for this type of media 
matching. In an offline stage (upper portion of figure), a hash is extracted from each 
offending image (or video, audio, or any other data file) and stored for future comparison; 
then, in an online stage (lower portion of figure), a hash is extracted from each piece of 
uploaded content and compared against all database hashes, after which any matched 
content is blocked, reviewed, reported, or subjected to whatever policy a service provider 
initiates. 

Because even the smallest change in the data causes a large change in the resulting 
hash, the only meaningful comparison of two hashes is an exact match for equality 
between their hexadecimal characters. The advantage of this property is that, because 
the extracted hashes for two distinct pieces of content are themselves distinct, it is 
exceedingly unlikely that one piece of uploaded content will be mistakenly identified as 
another piece of content. The disadvantage of this property is that only exact content 
matches can be discovered. 

Returning to the video of the Christchurch attack, MD5 or SHA-1 hard hashing would 
have been effective at blocking the exact same video file from re-upload, but not its 
numerous variants that underwent refilming, editing, or splicing. Even something as 
simple as removing metadata, modifying a single pixel, or adding or dropping a single 
frame will render hard hashing ineffective at content matching. This, again, has both 
advantages and disadvantages: hard hashing is exceedingly unlikely to incorrectly block 
content, but it is also easy to circumvent, either intentionally or unintentionally. 

While any service provider should use hard hashing to limit redistribution of banned or 
illegal content, this technology itself is easy to circumvent. Perceptual hashing provides 
an additional and important layer of protection because it is, by design, able to detect 
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many of the variants that hard hashing misses. 

3 Perceptual Image Hashing 

A digital image is made up of an array of pixels (picture elements). Each pixel is itself 
composed of three values corresponding to the primary red, green, and blue colors (RGB). 
In a typical digital image, each 8-bit pixel takes on a value from 0 to 255. A bright, pure 
red pixel, for example, is represented by the triple values (255,0,0), a dim, pure blue 
pixel by (0,0,64), a black pixel by (0,0,0), a mid-level gray pixel by (128,128,128), and a 
pure white pixel by (255,255,255). A modest 12-megapixel digital sensor produces a 
digital image of size 3000 × 4000 pixels. With a total of 256 possible values per pixel 
for each of three color channels, this sensor can produce a mind-boggling number of 
different images, exceeding the some 1024 estimated stars in the universe. 

The goal of perceptual hashing is to mimic the human visual system’s assessment of 
comparing two images based on the underlying scene content, as compared to a purely 
numeric comparison based on the pixel values. This is accomplished by extracting from 
the massive pixel-space representation a concise, distinct, perceptually meaningful 
signature that is resilient to modifications of the image, including compression, color 
shifts, cropping, rotation, the addition of a logo or overlain text, or any other modification 
that does not fundamentally change the underlying content but does alter the underlying 
pixel values. The extraction and comparison of a perceptual hash must also be efficient 
so that it can operate on billions of daily uploads. 

Version 1. Consider the following strawman perceptual image hash consisting of the 
average pixel value, rounded to the nearest integer, in each of the three RGB color 
channels. The hash for the image of the welder in Figure 1, for example, is (92, 88, 
73). As with MD5 and SHA-1, this hash can alternatively be represented as a fixed-size 
sequence of hexadecimal characters, computed by converting each decimal number to 
hexadecimal (5c, 58, 49) and concatenating to yield 5c5849. 

A pair of hashes extracted from two images can be compared for equality by comparing 
each of the three color channel averages (or their hexadecimal representation). The 
welder image, for example, with hash (92, 88, 73), is clearly distinct from the sunflower 
image in Figure 1, with hash (155,153,17), because all three values are significantly 
different. 

The comparison of the triple of values in this simple hash can be combined into a 
single metric as follows. Define the hash for two images to be ~h1 = (r1, g1, b1) and 
~h2 = (r2, g2, b2) (the~· notation reminds us we are dealing with a vector-valued quan-
tity consisting of two or more values). The standard Euclidean distance—the shortest 

~ ~distance between the pair of 3-D points represented by the hashes h1 and h2—is given 
by p

d = (r1 − r2)2 + (g1 − g2)2 + (b1 − b2)2 , (1) 

~ ~yielding a single value d that quantifies the difference between the two hashes h1 and h2. 
Note that if the hashes are identical (r1 = r2, g1 = g2, and b1 = b2), then the difference is 
0. As the individual parts of the hash diverge, the difference d increases. 

In addition to collapsing the comparison of the triple of values to a comparison of a single 
value, this Euclidean metric allows for the comparison not just for equality but also for 
near equality. If, for example, our reference hash is (92, 88, 73) as compared to a query 
hash of (91, 88, 73), then the difference between these hashes is only 1 intensity step (on 
a scale of 0 to 255). Such a small difference might result from an innocuous manipulation 
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such as image resizing or recompression. In order to catch these variants, two hashes 
can be said to match if their distance is less than a small threshold, d < τ , where, if the 
threshold τ = 0, then a strict equality is respected. A larger τ is desirable as it makes 
the hash more resilient, but at the cost of reducing distinctiveness. There is, therefore, 
an inherent tension between distinctiveness and resilience that must be balanced. The 
proper balance depends on a service’s tolerance for the accuracy of correctly matching 
all image variants (true positive) and incorrectly matching two distinct images (false 
positive), each of which can be balanced with the choice of τ : a small value of τ decreases 
the true positive rate, but also decreases undesirable false positives; a larger value of τ 
increases the true positive rate, but also increases false positives. 

Given a database of N reference hashes, a query hash can be compared, one at a 
time, against each reference hash, stopping when the computed distance is less than 
a specified threshold τ . The computational efficiency of this database comparison will 
grow linearly with the size of the database N : double the size of the database to 2N , and 
the computational cost will also double. Because each individual comparison will be 
relatively fast (typically on the order of milliseconds), this cost may not be prohibitive. As 
the database grows into the many millions, however, the computational cost of billions 
of daily full database comparisons may become more significant. 

This cost can be alleviated by storing the reference hashes in a kd-tree (Jon Louis 1975) 
(or similar type of data structure), affording an efficient search of all N entries with only 
log(N) comparisons: double the size of the database from N to 2N , and the computa-
tional cost will only increase by one additional comparison (not N additional comparisons 
as with a linear search). With such a slow growth in computational cost, the hash database 
can grow rapidly with little impact on the overall computational cost to the entire hashing 
pipeline. 

Let’s now consider this hashing technique in terms of the five desirable properties of a 
hash, enumerated in the Introduction: 

1. Distinct. The extracted hashes for two distinct pieces of content should themselves 
be distinct. This property does not hold: composed of three values, each of which 
can take on one of 256 values, there are only a total of 2563 = 16, 777, 216 unique 
possible hashes, a woefully small number as compared to the universe of possible 
images, meaning that it is guaranteed this hash will not be unique. 

2. Resilient. The extracted hash for a piece of content should be resilient to simple 
content modifications that do not fundamentally alter the underlying content. This 
property does not hold: this hash is resilient to, for example, a 90-degree rotation 
of the image, but is not resilient to a simple hue shift of the image, which changes 
the average pixel value in each color channel. Similarly, this hash is not resilient 
to the addition of a red border, which increases the average pixel value in the red 
channel. 

3. Deterministic. The extracted hash for a piece of content is always the same. This 
property holds: the computation of the average of pixel values is itself deterministic. 

4. Efficient. The computational cost of extracting a hash and comparing hashes 
should be low. This property holds: it is computationally trivial to compute the 
average pixel value in each color channel and compute the Euclidean distance 
between two hashes, as in Equation (1). 

5. Non-reversible. It should be practically impossible to reconstruct the original 
content from only the hash. This property holds: because any combination of 
the same pixels in an image will yield the same average value, there is no way of 
inferring the precise pixel pattern from only an average value. 
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Figure 2: The image of the welder is resized to 300 × 300 pixels and partitioned into 36 
non-overlapping, 50 × 50 pixel blocks. A partial hash is extracted from each of these 
blocks and combined to yield the image hash. 

Because of the lack of distinctiveness and resilience, this hash is not suitable, but it has 
provided us with a starting point to consider improvements. 

One goal of hashing is to reduce the representation of an image from its (typically) millions 
of pixels to a more concise representation. In our first iteration, each color channel was 
reduced to a single value. With only some 16 million possible hashes, this collapsing to a 
single value per color channel was perhaps too aggressive. 

Version 2. In this second iteration of a hash, consider the partitioning of an image into 
6 × 6, non-overlapping blocks, as in Figure 2 (an image can be initially resized to a 
square aspect ratio of size divisible by six [e.g., 300 × 300 pixels] to ensure an even 
partitioning). From each of these 36 blocks, the same set of three average pixel values— 
again, converted to integers—from each RGB color channel can be extracted. The full 
hash is constructed by concatenating all 36 triple values into a single hash consisting 
of 36 × 3 = 108 values. Composed now of 108 values, each of which can take on one of 
256 values, there are a staggering 256108 = 1.23 × 10260 unique possible hashes. With so 
many possible hashes, we at least have a chance of obtaining distinctiveness. 

The inspiration for this type of local, block-based partitioning as compared to, for example, 
rows, columns, or concentric circles is that many stages of the human visual system 
operate in a similar fashion (Wandell 1995). In particular, from receptive fields in the 
retina to the first processing stages in the visual cortex, the early stages of the human 
visual system are defined by this type of spatially localized information processing. 

Even though this block-based hash is longer, the same Euclidean distance metric can be 
~ ~applied to two hashes h1 and h2 (each now a 108-D vector, as compared to the previous 

3-D vector): p
d = d1 + d2 + · · · + d36, (2) 

where the ith block-based squared distance di, i ∈ [1, 36], is 

di = (r1,i − r2,i)
2 + (g1,i − g2,i)

2 + (b1,i − b2,i)
2 , (3) 

and where (r1,i, g1,i, b1,i) is the block-based hash for the ith block of the reference image, 
and (r2,i, g2,i, b2,i) is the block-based hash for the ith block of the query image. As before, 
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Figure 3: The gradient of an image emphasizes perceptually meaningful parts of an image 
corresponding to large transitions in color or brightness. 

the distance between two hashes can be compared for equality d = 0, or near equality 
d < τ . 

Let’s now consider the five desirable properties of this new hash: 

1. Distinct. This property holds, somewhat: with a significantly larger universe of 
possible hashes exceeding 1.23 × 10260, this hash promises more distinctiveness 
than the first iteration with a mere 1.67 × 106 unique hashes. At the same time, 
however, it is likely that, for example, two different landscape images, with a blue 
sky in the upper half of the image and green rolling hills in the lower half, will have 
similar hashes and will be incorrectly matched within a non-zero tolerance τ . 

2. Resilient. This property does not hold: this hash is not resilient to a simple hue 
shift of the image, which changes the average pixel value in each color channel. 
Similarly, because the individual hash components are extracted from a fixed grid 
partitioning of the image, this hash will not be resilient to a cropping or shifting of 
the image that results in a misalignment of the original grid. 

3. Deterministic. This property holds: the computation of the average block-based 
pixel values is itself deterministic. 

4. Efficient. This property holds: it is computationally efficient to resize the image, 
compute the block-based average pixel value in each color channel, and then 
compare the resulting 108 values, as seen in Equations (2)-(3). 

5. Non-reversible. This property mostly holds: because the hash is composed of the 
average color value from each of 36 blocks, the hash is itself a low-resolution, 6 × 
6 pixel version of the image. At this resolution, however, there is little identifiable 
content to be extracted from the hash. 

Overall, this second iteration improved on the first with better distinctiveness, but still 
suffers from resilience and has given up a little in terms of non-reversibility. Because 
pixel values can be so easily manipulated while retaining perceptual similarity, relying 
only on simple measurements (e.g., pixel average) extracted from the underlying RGB 
pixel values is unlikely to yield a resilient hash. 

Version 3. Shown in Figure 3 is a filtered version of the welder image. This image is 
computed by differencing neighboring pixels in the horizontal direction (image rows) and 
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Figure 4: Ten versions of the original welder image (top left) with increasing levels of 
photometric and geometric distortions. Shown above each image is the numeric hash 
distance relative to the original (the larger the hash distance, the more dissimilar the 
images). By way of comparison, the distance of two unrelated images (lower right) is 
larger than the even most distorted versions of the original. 

in the vertical direction (image columns), then squaring each of these difference images 
and summing them together. In this filtered image, the transitions (edges) between 
bright and dark regions are emphasized (brighter pixels) while uniform color patches are 
de-emphasized (darker pixels). 

A perceptual hash can be extracted from this filtered image by computing the average 
gradient value in each color channel for each 6 × 6 non-overlapping block. As with the 
previous hash, this yields a hash consisting of 36 × 3 = 108 values. Alternatively, the RGB 
image can initially be converted to a grayscale image (gray = 0.299R + 0.587G + 0.114B). 
The final hash can then be extracted from this now single-channel image, yielding a hash 
with only 36 values. Because the gradient information across color channels is typically 
highly correlated, operating on only a grayscale image improves computational efficiency 
without a significant impact on distinctiveness. By again treating two such hashes as 
108-D (color) or 36-D (grayscale) vectors, the Euclidean distance between two hashes 
provides a measure of similarity between the underlying images. 

Shown in Figure 4 are ten versions of the welder image with increasing levels of photo-
metric and geometric distortions. Shown above each image is the Euclidean distance 
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between a gradient-based hash extracted from each image and the hash from the original 
undistorted image in the top left panel. Shown in the last two panels are two unrelated 
images. Even the two most distorted welder images in the last row are more similar to 
the original than these distinct images, showing the resilience and distinctiveness of this 
type of perceptual hashing. 

With respect to the five desirable properties, this new hash is more distinct than the 
color-based hashes because the image gradient captures more distinct scene structure; 
it is also resilient to simple color changes, but not other manipulations like cropping 
or rotation. Because the image filtering is itself deterministic and efficient, this new 
hash remains deterministic and efficient. Because of the low resolution of the blocks, 
the initial image filtering, and extraction of only summary statistics, the non-reversible 
property mostly holds. 

Most perceptual hashes, consisting of three basic parts, follow the same pattern as 
those described above: (1) preprocessing (e.g., image resizing, image gradient); (2) hash 
extraction (e.g., average color or gradient); and (3) hash comparison (e.g., Euclidean 
distance). The many choices for each of these stages result in varying compromises 
between the five desired properties of a hash (see Smeulders et al. 2000; Liu et al. 2007; 
Du, Ho, and Cong 2020 for extensive surveys of different techniques). 

The most typical compromises are between distinctiveness and resilience, and the 
specific manipulations to which the hash is resilient. A hard hash, for example, is highly 
distinct but exhibits no resilience to even a small content change. At the other extreme, 
a global hash based on the average per-channel pixel color with a threshold of τ =255 is 
highly resilient but utterly non-distinct. Similarly, some hashes are resilient to color and 
brightness changes but not necessarily to geometric changes like rotation and cropping. 
In practice, the choice of a hash is based on a number of factors, including: 

1. Scale. When operating at the scale of a major social media platform, for example, 
with billions of daily uploads, any hash must be highly efficient and distinct. At this 
scale, even a 1/100 or even 1/10,000 false positive rate (incorrectly matching two 
images) is untenable. 

2. Tolerance. When trying to limit the upload of, for example, legal adult pornography, 
resilience may be less important than, for example, trying to limit child sexual 
abuse imagery (CSAM). 

3. Security. When trying to limit the upload of copyright-infringing material, for 
example, non-reversibility may be less critical than in other more sensitive domains. 

We will discuss, in the Implementations section, several real-world deployments of 
perceptual hashing along with their relative advantages and disadvantages. 

4 Perceptual Video Hashing 

A digital video typically consists of between 24 and 30 images (frames) per second. Each 
frame is recorded in the same format as described in the previous section. The simplest 
extension of perceptual hashing from images to videos is to hash each reference video 
frame using any perceptual image hash of choice. On upload, each query video frame is 
then hashed and compared against all reference video frames. If a specified number of 
frames are matched, then the video can be considered a match. The number of required 
matching frames can be configured to control the balance between distinctiveness and 
resilience: a large number of required frames increases distinctiveness, whereas a 
smaller threshold increases resilience. 
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The advantage of this approach is that it requires no new infrastructure or implementation 
beyond a basic perceptual image hashing implementation. There are, however, two 
disadvantages of this approach. First, at 30 frames per second (fps), even a short three-
minute video consists of 3 min × 60 sec/min × 30 frames/sec = 5,400 individual frames, 
each of which would have to be hashed and compared against the full database. Even 
with an efficient image hashing algorithm and the improved computational efficiency of 
a kd-tree for hash comparison, a frame-based video hash database will rapidly grow in 
size, with each video adding thousands to potentially hundreds of thousands of individual 
hashes. Second, by considering only a single frame at a time, we are not taking advantage 
of the distinctive nature embedded in the temporal ordering of frames; doing so would 
almost certainly improve the distinctiveness of any perceptual hash. 

Because successive frames in a video are typically highly similar, the computational 
inefficiency of hashing every video frame can be alleviated by sampling the video in time. 
If, for example, only every 30th frame was selected and hashed (for an effective frame rate 
of 1 fps), then a three-minute video would yield only 3 min × 60 sec/min × 1 frame/sec = 
180 individual frames, down from 5,400 at the full 30 fps. The advantage of this approach 
is, again, that it requires no new infrastructure, and the added computational complexity 
at this reduced frame rate is more manageable, though still somewhat costly as the 
number of reference videos increases. The disadvantage remains that the distinctive 
temporal order of frames is not being leveraged. 

Successive frames of most videos are highly similar because of the relatively high tem-
poral sampling rate of a typically stationary camera imaging an often static or slowly 
changing scene. We can, therefore, further reduce the complexity of analyzing a video 
by reducing this frame-to-frame redundancy beyond sampling every 30th (or more) 
frames. 

Perceptual image hashing, conveniently, provides a mechanism for measuring the simi-
larity between two successive frames. Redundancy in a video can be eliminated by using 
perceptual image hashing to eliminate similar successive frames. Starting with the first 
frame, each successive frame is dropped from consideration if the perceptual image 
hash is less than a generous threshold τ ; otherwise, the frame is retained. A perceptual 
image hash is then extracted from each of the remaining key-frames and concatenated 
to yield a final video hash. Unlike the image-based hashing that yields a fixed-length 
hash, this video hash can be of arbitrary length. This presents both a challenge and an 
opportunity for comparing two hashes. 

A Euclidean distance cannot be used to compare two hashes of different length. In-
stead, the longest common substring (LCS) (Gusfield 1997) can be used to compare 
two variable-length hashes. By way of intuition, the LCS of the two strings ABABACABBC 
and ABACABACBBCA is six because the longest common string shared by these strings is 
ABACAB. Note that these strings also have the substring BBC in common, but this is shorter 
than the substring of length six. The advantage of using LCS to compare two hashes 
is that it allows us to find not just matching videos but also shorter video segments or 
video compilations where video segments are embedded within a larger video. Because 
each component of the final video hash is itself an image hash, it can be compared using 
the same Euclidean distance metric, allowing for both an exact or near frame-by-frame 
match. A second threshold can be applied to the length of the longest common substring 
before triggering a match. 

Running on a standard Linux machine, our Java-based implementation of this perceptual 
video hashing requires approximately 10 milliseconds (ms) to process a single video 
frame and approximately 2.5 ms to compare two hashes (Farid 2018a). To improve 
efficiency, a multicore version of this algorithm allows for a video to be partitioned into 
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an arbitrary number of short segments, each of which can be analyzed on a separate 
computer core. The individual results from each segment can then be combined to create 
a single hash. With this approach, the rate-limiting step to analyze any video is simply 
the number of available computing cores. 

When implementing any frame-based video hash, care must be taken not to add to the 
reference hash database parts of the video that are innocuous or nondescript. Many 
videos, for example, append generic opening and closing credits and may create fade 
ins/outs, where a small number of frames will be uniformly black or white. These parts of 
any reference video must be removed prior to extracting the perceptual video hash. 

As with perceptual image hashes, most perceptual video hashes consist of the same 
three basic steps: (1) preprocessing; (2) hash extraction; and (3) hash comparison. The 
many choices for each of these stages result in varying compromises between the five 
desired properties of a hash. 

Although we won’t discuss perceptual audio hashing here, audio files are hashed following 
the same basic structure as images and video, and are an important addition to any 
perceptual hashing system (Özer et al. 2005). Perceptual audio hashing would have 
been, for example, a powerful tool to contend with a myriad of variants of the Christchurch 
terror video in which the underlying audio was similar, even if the visual appearance was 
not. 

5 Implementations 

The academic literature is home to a rich source of different perceptual hashing tech-
niques. At the same time, a number of these techniques have been deployed on a range 
of online services, for a range of different applications. In this section, we will review 
some of these techniques. Because some of these techniques are proprietary and/or 
releasing algorithmic details may threaten their efficacy, we will not delve into the specific 
algorithmic details but instead simply review the various techniques and how and where 
they are deployed. 

In 2007, YouTube deployed Content ID (originally called Video Identification) (YouTube) 
after facing threats of litigation and massive monetary fines for not doing enough to 
prevent—and for profiting from—the sharing of copyrighted materials. This perceptual 
audio/video hashing extracts a distinct signature from owner-supplied content. When 
flagged at upload, content owners can choose to block, track views, or monetize the 
content. 

By 2008, facing an explosion in the spread of child sexual abuse material (U.S. Senate 
2007), the leading technology companies had yet to develop similar technology to con-
tend with this horrific content. Led by Microsoft, a perceptual image hash—PhotoDNA (Mi-
crosoft)—was developed, tested, and deployed in 2009 on Microsoft’s Bing search engine 
and on what was formerly called SkyDrive cloud service. In 2010, Facebook deployed 
PhotoDNA on their services. In 2011, Twitter followed suit, while Google waited until 
2016 to deploy. In addition to these titans of tech, PhotoDNA is now in worldwide deploy-
ment across a range of platforms. As a measure of PhotoDNA’s efficacy, shown in Figure 5 
are the number of yearly reports submitted to the National Center for Missing and Ex-
ploited Children’s (NCMEC) CyberTipline (a single report may consist of tens to hundreds 
of individual images or videos). According to NCMEC, a major contributor to the more 
than 100× increase in reports over the past decade has been the adoption by service 
providers of perceptual hashing tools like PhotoDNA (Bursztein et al. 2019). 

PhotoDNA was designed to perceptually hash images because, at the time, digital video 
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Figure 5: Yearly CSAM reports to NCMEC’s CyberTipline. From 2010 to 2020, the number 
of yearly reports jumped from slightly more than 100,000 to over 20,000,000. 

had not yet become ubiquitous. In the intervening decade, videos have come to dominate 
many online platforms. In 2016, largely in response to the growing threat of international 
and domestic extremism, the Counter Extremism Project (CEP) developed eGlyph (CEP 
2016), an audio, image, and video perceptual hash. In an alternate application to content 
moderation, the CEP used eGlyph to determine the prevalence on YouTube of ISIS-
generated, terror-related videos (Project 2018; Farid 2018b). Over a twelve-week period 
starting in early 2018, CEP used YouTube’s API to analyze videos associated with a simple 
keyword search (e.g., Caliphate, Jihad, Flames of War, etc.), and compared the resulting 
videos against a video-hash database of ISIS videos previously identified as violating 
YouTube’s terms of service. With a hash database of only 229 videos, CEP found a total 
of 1,348 ISIS videos uploaded to YouTube, garnering a total of 163,391 views. These 
videos were uploaded by 278 different YouTube accounts, one of which uploaded as 
many as 50 videos before the channel was either removed by YouTube administrators 
or deleted by the owner. More than 90% of the identified videos were uploaded and 
remained online long enough to be found, revealing a failure on the part of YouTube 
to proactively scan for previously identified terror-related content. As this application 
showed, perceptual hashing can also be used to verify the effectiveness of a service 
provider’s content-moderation tools. 

In response to a rise in online extremism and terrorism, the Global Internet Forum to 
Counter Terrorism (GIFCT, https://gifct.org/) was founded in 2016 by Facebook, Mi-
crosoft, Twitter, and YouTube to “foster technical collaboration among member compa-
nies, advance relevant research, and share knowledge with smaller platforms.” As part 
of this mission, the GIFCT has created an image and video hashing database of identified 
terrorism materials that it shares with industry partners. 

In 2019, Facebook announced an open-source image and video hashing, PDQ (with 
the non-obvious root “a Perceptual algorithm utilising a Discrete Cosine Transform and 
outputting [amongst others] a Quality metric”) and TMK+PDQF (Temporal Match Kernel + 
PDQ with Floating-point operations) (Davis 2019; Facebook; Dalins, Wilson, and Boudry 
2019). Inspired by the perceptual hash pHash (Zauner 2010), PDQ follows the same 
pattern of other perceptual image hashes described in the Perceptual Image Hashing 
section: 

https://gifct.org/
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1. Preprocessing. Transform the image (resize to a smaller resolution, convert from 
RGB to luminance, and compute the image gradient). 

2. Hash extraction. The hash is extracted from measurements made from a block-
based, discrete cosine transform (DCT) to yield a 256-bit (64 hexadecimal charac-
ters). 

3. Hash comparison. Two hashes are compared using a Hamming distance, measur-
ing the minimum number of substitutions needed to change one string of characters 
into another. The video hash TMK+PDQF begins by first temporally resampling 
the video to a reduced 15 frames per second and extracting a per-frame hash 
using PDQF, a modified version of PDQ. The final hash is computed from different 
combinations of these frame-based hashes. 

In August of 2021, Apple announced the development of NeuralHash for detecting known 
CSAM in images stored in Apple’s iCloud (Apple 2021a). This technology was scheduled 
to roll out in iOS 15 and iPadOS 15, but was delayed due to pressure from privacy groups. 
Unlike PhotoDNA that maps perceptually similar images to similar, but not necessarily 
identical, hashes, NeuralHash converts each image to a unique numeric value. This 
unique image-to-hash mapping, along with private set intersection (Apple 2021b)—a 
secure technique for database comparisons—allows for a more privacy-preserving hash 
database comparison. As compared to PhotoDNA, which performs the image hashing 
and comparison upon upload to a server, Apple’s NeuralHash performs the image hashing 
and comparison directly on the device. This client-side comparison allows for a more 
privacy-respecting hashing, as it does not reveal the image contents to the server unless 
a match is found upon upload to iCloud. Apple reports a 1 in 1 trillion likelihood of 
incorrectly matching a user’s account; manual review further mitigates the chance of a 
false report. 

Unlike PhotoDNA, eGlyph, and NeuralHash, PDQ and TMK+PDQF are open source. There 
are advantages and disadvantages to both approaches. Open-source software allows a 
larger research community to more easily contribute to advancing a technology. On the 
other hand, if the inner workings of the hashing technology are revealed, an adversary 
can more easily circumvent detection. 

Lastly, TinEye (tineye.com) and Google’s reverse image search (images.google.com) offer 
powerful internet-scale tools for searching for perceptually similar images. These tools 
can be useful in larger investigations of the source of an image. 

6 End-to-End Encryption 

Following a trend in other messaging apps, Facebook recently announced plans to move 
all their messaging services to an end-to-end encrypted system (E2EE) (Facebook 2021). 
This move would prevent anyone, including Facebook, from seeing the content of any 
personal communication. 

While E2EE provides users with some added privacy, the associated risks are not insignifi-
cant. In announcing his plans, Mark Zuckerberg conceded it came at a cost: “At the same 
time, there are real safety concerns to address before we can implement end-to-end 
encryption across all of our messaging services. Encryption is a powerful tool for privacy, 
but that includes the privacy of people doing bad things. When billions of people use a 
service to connect, some of them are going to misuse it for truly terrible things like child 
exploitation, terrorism, and extortion” (Zuckerberg 2019). 

In 2020, for example, the NCMEC’s CyberTipline received over 21 million reports of 

tineye.com
images.google.com
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apparent CSAM (see Figure 5). Over 20 million of these reports were generated by 
Facebook’s various services (National Center for Missing and Exploited Children 2020), 
the vast majority of which were generated by automatic perceptual hashing technologies. 
If fully implemented, an E2EE system would render these technologies ineffective. All 
perceptual image and video hashing technologies described to this point require the 
receiving service provider to have direct access to the underlying media. Within a fully 
E2EE system, content passing through the provider remains encrypted and inaccessible 
to PhotoDNA and the like. 

In this section we consider how perceptual hashing can be deployed within an E2EE 
system. Any such system will require a compromise between privacy and security. 
No system will be perfect, and we must choose solutions that find the appropriate 
balance. 

Traditional perceptual hashing operates on media as it passes through a service provider’s 
system (so-called server-side hashing). In an E2EE system, the media is only accessible 
by the sender and receiver, with no intermediary access. One relatively obvious solution, 
therefore, would be to extract the hash on the sender’s device (so-called client-side 
hashing), and transmit this hash alongside the fully encrypted message. The service 
provider can then analyze the hash against a database of offending content. If the hash 
is non-reversible, this approach somewhat preserves privacy (for added security, the 
hash can also be encrypted—but not end-to-end encrypted—so only the service provider 
with the proper credentials can decrypt). Apple’s NeuralHash is an example of this form 
of client-side hashing, where both the hashing and database comparison are performed 
entirely on a user’s device. The drawback of this approach is that software for extracting 
the hash must be deployed on billions of devices, creating a potential vulnerability in 
which the hashing algorithm is reverse-engineered and circumvented. This threat can be 
partially mitigated by converting the original media into an intermediate representation 
that is non-reversible but not the complete hash, and then completing, server-side, the 
hash computation and comparison. In this approach, neither the full hashing algorithm 
nor the full media content is revealed. Another drawback of this client-side hashing is 
that, beyond having indirect knowledge of a specific image/video being transmitted, the 
contents of the message remain encrypted and inaccessible. This could pose challenges 
for legal investigations or prosecutions. 

A second approach uses an encryption scheme that allows for limited computations 
on the encrypted data, without the need or even ability to decrypt the data. We will 
refer to decrypted data as “plaintext” and the resulting encrypted data as “ciphertext.” 
Homomorphic encryption schemes (Naehrig, Lauter, and Vaikuntanathan 2011) (specif-
ically, partially homomorphic encryption schemes) have two intriguing mathematical 
properties: (1) the decrypted product of two ciphertexts is equal to the sum of their 
corresponding plaintexts; and (2) the decrypted exponentiation of a ciphertext by a scalar 
value is equal to the product of the scalar and corresponding plaintext. If a perceptual 
hash, in plaintext, can be extracted and compared by only summing pixel values together 
and multiplying a pixel value by a scalar multiple, then this perceptual hash can be 
implemented in the encrypted ciphertext (see, for example, Singh and Farid 2019). The 
advantage of this approach is that, unlike the client-side hashing, this hashing can be 
performed server-side. A disadvantage is that the cost of ciphertext computations is 
currently significantly higher than their plaintext counterparts. 

Beyond contending with CSAM and other illegal content, homomorphic perceptual hash-
ing can be used in other domains. In 2017, for example, Facebook announced a trial 
program to combat the growing problem of nonconsensual intimate imagery (often re-
ferred by the misnomer “revenge porn”) (Facebook 2017). Those wishing to prevent 
re-uploads of their intimate imagery were asked to send the offending images to Face-
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book, who would in turn extract a perceptual hash from this content and block future 
uploads. Although well intentioned, this program was met with some skepticism. At a 
time when social media was (and remains) under scrutiny for their failure to protect user 
data and privacy, it seemed unreasonable to ask users to trust Facebook with some of 
their most personal and intimate images. If homomorphic encryption and hashing is 
used, then instead of directly sending intimate images, the victim need only extract a 
homomorphic perceptual hash directly on their device. This hash can then be securely 
shared with a service provider. A drawback of this approach is that trolls could easily 
upload any image they wish to be blocked, so this approach would have to be paired with 
a single manual review upon the first hash match to verify the image in question is in fact 
nonconsensual of the reporting complainant. 

Client-side hashing or homomorphic encryption can allow for perceptual hashing to 
continue to operate within an E2EE system. Neither of these solutions, however, contend 
with the larger issue of lawful access. Even with a lawful warrant, for example, access to 
past or future communications is not possible within an E2EE messaging services. Some 
argue this is necessary to protect user privacy, while others argue that any messaging 
service must allow for lawful access for investigations and prosecutions. 

In a third alternative, a secure enclave allows for software to be executed on a remote, 
otherwise untrusted computer, while providing some integrity and confidentiality guar-
antees (Costan and Devadas 2016; Ferraiuolo et al. 2017). With specialized, trusted 
hardware, a remote computer creates a secure container, after which a remote user 
uploads the desired computation and data into this container. By design, the trusted 
hardware protects the computational integrity and data confidentiality. Although not a 
true E2EE system—because the enclave itself has access to the decrypted data—this 
type of hardware has many attractive properties that allow for a reasonable balance 
between privacy and security. 

7 Discussion 

With billions of daily uploads, content moderation on the largest social media platforms 
has proven exceedingly challenging. A combination of user-generated content ranging 
from the illegal to the dangerous and hateful, alongside algorithms amplifying this content 
because it drives user engagement, has resulted in news feeds and watch lists awash 
with the internet’s flotsam and jetsam. As a result, we are plunged into increasingly 
angry, isolating, and dangerous echo chambers. While the past decade may have been 
good for a relatively small number of technology company shareholders, it has been 
decidedly not good for many individuals, societies, and democracies. 

There are many challenges in mitigating harm stemming from our online communities, 
ranging from the scale and speed with which content is uploaded and spread, to the 
tensions between the desire for an open and free internet balanced against individual 
and public safety. Perceptual hashing should be a central tool of any content modera-
tion system. These techniques, however, must be paired with other technologies and 
human moderation. While perceptual hashing can mitigate the harm of redistribution 
of everything from CSAM to terror-related content, new illegal and harmful content is, 
sadly, created every day. Contending with these ever-evolving threats requires additional 
technologies to analyze text, audio, images, and video for potentially illegal or harmful 
content. Instead of demanding perfection from these technologies, we should view them 
as triage technologies that filter the billions of uploaded content to a more manageable 
volume for human review. More care, however, must also be taken to consider the im-
pact on human moderators, many of whom report PTSD-like symptoms along with a 
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host of other mental health issues after spending their days viewing the dredges of the 
internet (Arsht and Etcovitch 2018). 

Although well established, perceptual hashing technologies are not without their detrac-
tors. It has been argued that this type of systematic content scanning can lead to abuse 
by totalitarian governments or overreach by service providers. For example, some argue 
that even if justified in the case of CSAM, such technologies should not be deployed in 
other arenas—for example, terrorism and hate speech—in which illegal or inappropriate 
content may be more difficult to define. While there is merit to the argument that some 
content can be difficult to categorize, there is an abundance of content that is clearly 
illegal, dangerous, or obviously violative of a provider’s terms of service. A benefit of 
perceptual hashing, unlike more opaque and uninterruptible AI classifiers, is that the 
contents of any hash database can be audited for appropriateness. A second benefit is 
the highly targeted nature of hashing, as compared to AI classifiers with unpredictable 
generalizability. To this end, deployment of perceptual hashing should be paired with 
a clear specification of the criteria under which content is added to a hash database, 
along with periodic audits of the database. At the Canadian Centre for Child Protec-
tion (https://protectchildren.ca), for example, each piece of content is triple verified by 
independent expert examiners before its addition to the Centre’s hash database. 

As with any inherently adversarial relationship, perceptual hashing is vulnerable to 
counterattack by those seeking to avoid detection. Some attacks can be countered by 
simply augmenting the hash database. If, for example, a hash is not resilient to simple 
geometric transformations of an image (e.g., 90-degree rotation, or XY-flipping), then 
these transformed images can simply be hashed and added to the hash database. Other 
attacks, however, may be more challenging to counter. A combination of multiple hashes, 
each with their own distinct vulnerabilities, can be deployed to make counterattack more 
difficult. 

Returning to the New Zealand Christchurch terror video, several points of failure con-
tributed to the Christchurch, US Capitol, and other terror attacks over the past decade, 
including online radicalization, distribution, and redistribution. 

Radicalization: Every day, four petabytes (more than four million gigabytes) of data 
are uploaded to Facebook. But not all of this content is equal in the eyes of Facebook. 
Starting in 2009, Facebook eliminated the ability to chronologically sort the News Feed, 
turning over editorial control to algorithmic curation. Similarly, every minute of every day, 
more than 500 hours of video are uploaded to YouTube. The likelihood that any video 
is widely seen, however, depends largely on recommendation algorithms. A full 70% 
of watched YouTube footage is recommended by the company’s algorithms (Faddoul, 
Chaslot, and Farid 2020). By 2016, Twitter and Instagram joined Facebook and YouTube 
in unleashing attention-grabbing recommendation algorithms to control what we read, 
see, hear, and, ultimately, believe. In 2018, Facebook’s internal research found “Our 
algorithms exploit the human brain’s attraction to divisiveness.” The research went on to 
conclude that, if left unchecked, Facebook’s recommendation algorithms will promote 
“more and more divisive content in an effort to gain user attention and increase time on the 
platform” (Horwitz and Seetharaman 2020). A separate internal Facebook study found 
that 64% of people who joined an extremist group on Facebook did so because of the 
company’s recommendation. Put simply, the recommendation algorithms have learned 
that users respond to outrage and sensational material, and have therefore learned to 
promote this material to maximize user engagement and, in turn, ad revenue. 

Distribution: Although 200 viewers watched the livestream of the Christchurch attack, 
nobody reported it. Facebook had various automatic AI-based content moderation 
tools, but they failed to detect this particular video because it did not match the pattern 

https://protectchildren.ca
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previously seen by Facebook’s AI system: “AI systems are based on ‘training data’, which 
means you need many thousands of examples of content in order to train a system that 
can detect certain types of text, imagery or video. This approach has worked very well 
for areas such as nudity, terrorist propaganda and also graphic violence where there is 
a large number of examples we can use to train our systems. However, this particular 
video did not trigger our automatic detection systems. To achieve that we will need to 
provide our systems with large volumes of data of this specific kind of content, something 
which is difficult as these events are thankfully rare.” (Rosen 2019). As this incident 
showed, even modern AI tools and tens of thousands of human moderators are not 
necessarily sufficient to disrupt even the most heinous acts from being shared on social 
media. 

Redistribution: Facebook’s systems also failed to fully prevent the redistribution of 
variants of the livestreamed attack. In order to prevent redistribution, a digital signature 
(hash) was extracted from the original video and its various screen-recorded variants. 
Future uploads could then be compared to these hashes in order to automatically prevent 
re-upload. This technology, however, failed to contend with the large number of variants: 
“We’ve been asked why our image and video matching technology, which has been so 
effective at preventing the spread of propaganda from terrorist organizations, did not 
catch those additional copies. What challenged our approach was the proliferation of 
many different variants of the video, driven by the broad and diverse ways in which people 
shared it: First, we saw a core community of bad actors working together to continually 
re-upload edited versions of this video in ways designed to defeat our detection. Second, 
a broader set of people distributed the video and unintentionally made it harder to match 
copies” (Rosen 2019). Once again, this incident highlighted the challenges with reducing 
both sharing and redistribution of content. 

While much has and should be written about algorithmic amplification leading to on-
line radicalization (Neumann 2013) and content-moderation tools for automatically 
detecting problematic and illegal content (Gillespie 2020), we have focused here only on 
technologies to limit redistribution of previously identified content. Even though these 
technologies have proven to be reliable and effective, they have not been developed, 
refined, and deployed with sufficient energy or sense of urgency proportional to the depth 
and breadth of online harms that have emerged over the past decade. More can and 
should be done to develop and deploy increasingly more distinct, resilient, and secure 
perceptual hashes. More can and should be done to create industry-shared databases 
of illegal, dangerous, and hateful content. And, more can and should be done to insist 
that all online service providers are held to a higher standard when it comes to the 
offline harms that result from their often laissez-faire attitude towards online content 
moderation. 
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