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Abstract. Synthetic media—so-called deep fakes—have captured the 
imagination of some and struck fear in others. Although they vary 
in their form and creation, deep fakes refer to text, image, audio, or 
video that has been automatically synthesized by a machine-learning 
system. Deep fakes are the latest in a long line of techniques used to 
manipulate reality, yet their introduction poses new opportunities and 
risks due to the democratized access to what would have historically 
been the purview of Hollywood-style studios. This review describes how 
synthetic media is created, how it is being used and misused, and if (and 
how) it can be perceptually and forensically distinguished from reality. 

1 Introduction 

In 1917, two young girls in the English village of Cottingley—the cousins Elsie Wright 
(1901–1988) and Frances Griffiths (1907–1986)—convinced many around the world 
of the existence of fairies with the help of Sir Arthur Conan Doyle (ironically, the 
creator of the famed detective Sherlock Holmes) (Owen 1994). A series of five photo-
graphs showing the cousins frolicking with tiny fairies was taken as visual proof of a 
supernatural phenomena; Doyle vouched for the authenticity of the photos. Six decades 
after the photos captured the public’s imagination, the cousins admitted they were a 
hoax, created from cardboard cutouts from a children’s book; bewilderingly, Frances 
maintained that one of the photos was genuine. 

For as long as we have been recording the sights and sounds around us, we have been 
manipulating them (Brugioni 1999). The 1917 Cottingley Fairies constituted a low-tech 
manipulation in which a physically altered scene was photographed. As early as the 
mid-1860s, photographs of US President Lincoln and General Ulysses S. Grant were 
manipulated to—it would appear—make them more visually compelling. In the 1930s, 
Joseph Stalin, Mao Tse-tung, and Adolf Hitler each attempted to erase from history 
those who fell out of their favor by air brushing them out of photographs. These photo 
manipulations required a skillfully wielded scalpel and paintbrush to physically alter a 
negative before re-exposing it to yield a manipulated photo. 

In what would be unlikely to raise an eyebrow today, a 1982 National Geographic 
cover caused an uproar after it was revealed that the depicted Great Pyramid of Giza 
was digitally shifted to fit the magazine’s vertical format. Sophisticated digital tools 
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for recording, editing, and distributing manipulated media became widely available 
over the next 40 years, leading to various forms of digital chicanery. Today, we are 
bombarded with manipulated imagery from the humorous to the absurdly unrealistic 
body images in fashion magazines and Instagram, all of which are being weaponized 
in the form of non-consensual pornography, political attack ads, scientific fraud, 
misrepresentations in the media, and disinformation campaigns designed to sow civil 
unrest and disrupt democratic elections. 

From the scalpel and paintbrush in the darkroom to Photoshop on a laptop, the most 
recent development in digital tampering is in the form of automated AI-powered media 
synthesis and manipulation (so-called deep fakes). Leveraging modern tools in machine 
learning, computer graphics, and computer vision, these techniques have lowered the 
skill and time barriers for manipulating content. While the ability to create audio, image, 
and video of someone saying or doing something they never did is not fundamentally 
new, the true power of deep fakes is the widespread access to sophisticated technology 
that was previously only in the hands of Hollywood-style studios and state-sponsored 
actors, along with the instantaneous and global distribution channels afforded by social 
media. 

This article reviews how deep-fake audio, images, and videos are created; how they 
are being used in creative and intriguing ways; how they are being misused in ethically 
questionable and illegal ways; and if (and how) they they can be perceptually and 
computationally discriminated from real content. While AI-synthesized text is beyond 
the scope of this review, recent breakthroughs in natural-language processing have 
made it possible to automatically synthesize detailed and cogent prose (Zellers et 
al. 2019; Brown et al. 2020). 

2 Creating deep fakes 

Before examining the use, misuse, and detection strategies associated with deep fakes, 
I describe how synthetic media is created using representative examples of recent 
audio-, image-, and video-synthesis techniques. 

2.1 Audio 

A prototypical text-to-speech system (Taylor 2009; Shi 2021; Tan et al. 2021) consists 
of two basic parts. First, the text to be spoken is specified and (typically) converted into 
a phonetic and prosodic representation that captures the specific sounds, intonation, 
stress, and rhythm to be spoken. Second, a synthesis engine converts this symbolic 
representation into a raw audio waveform, typically through an intermediate frequency-
based representation. Synthesized voices have come a long way from the tinny, robot 
voices of past years; boosted by advances in machine learning, today’s synthetic voices 
are increasingly more realistic. 

Conventional wisdom in audio synthesis has avoided directly synthesizing an audio 
signal’s raw waveform (Figure 1 [top]) because of the extremely high sampling density 
(16,000 or more samples per second). It was thus surprising when WaveNet produced 
highly realistic synthesized voices by directly synthesizing the audio waveform (Van Den 
Oord et al. 2016). This approach was inspired by the creators’ previous work in image 
synthesis (Van den Oord et al. 2016). WaveNet takes as input acoustical features of 
the desired speech (e.g., the mel spectrum, Figure 1 [bottom]) and synthesizes the 
corresponding audio waveform. WaveNet’s primary computational machinery is an 
autoregressive neural network, which generates each successive sample of the audio 
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Figure 1: An 8.5-second audio clip of Handel’s Messiah (top) and the corresponding 
frequency-based mel spectrum representation (bottom). 

waveform from previously generated samples and iteratively feeds synthesized samples 
back into the network. This process allows the network to incorporate audio information 
across thousands of time stamps, yielding highly realistic sounds. The network can 
also be conditioned on the identity of the speaker, allowing it to generate recordings 
in different voices.1 

DeepVoice employs a different network architecture to directly convert text (repre-
sented as characters or phonemes) into a spectrogram, which is then converted into an 
audio waveform (Gibiansky et al. 2017; Ping et al. 2017). The resulting audio is highly 
realistic, but a bit less so than WaveNet, as measured by user-generated scoring. 

While the techniques described above focused on general-purpose voice synthesis, 
building a system to generate speech in one specific voice appears to be highly effective. 
In 2019, a small team of Dessa researchers created a system to synthesize speech in 
the voice of radio personality Joe Rogan (Kadhim and Palermo 2019). Follow the link 
in the previous reference and listen for yourself. I am not aware of any studies that 
formally evaluated the realism of the resulting synthesized voice, but except for a slight 
difference in the cadence of his speech, I find it difficult to distinguish the real Rogan 
from the synthesized. 

Voice synthesis is also quickly entering the commercial world where, for example, a 
web-based application can be used to synthesize audio in your own voice.2 

2.2 Images 

A generative adversarial network (GAN) (Goodfellow et al. 2014) is arguably the most 
common computational technique for synthesizing images of people, cats, planes, or 
any other category: generative, because these systems are tasked with generating an 
image; adversarial, because these systems pit two separate components (the generator 
and the discriminator) against each other; and network, because the computational 
machinery underlying the generator and discriminator are neural networks. Versions 

1. Audio samples of spoken English and Mandarin Chinese, as well as synthesized music, can be heard 
at https://www.deepmind.com/blog/wavenet-a-generative-model-for-raw-audio. 
2. https://www.descript.com/lyrebird 

https://www.deepmind.com/blog/wavenet-a-generative-model-for-raw-audio
https://www.descript.com/lyrebird
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Figure 2: A representative set of real (top) and synthetically generated (bottom) 
faces (Nightingale and Farid 2022). 

1, 2, and 3 of StyleGAN (Karras, Laine, and Aila 2019; Karras et al. 2020; Karras 
et al. 2021) and its precursor ProGAN (Karras et al. 2017) are some of the most 
successful techniques for synthesizing realistic faces. Each successive iteration of 
StyleGAN yielded higher-quality faces with fewer visual artifacts. Although there are 
many complex and intricate details to these systems, StyleGAN (and GANs in general) 
follow a fairly straightforward structure. 

When tasked with creating a synthesized face, the generator starts by splatting 
down a random array of pixels, and feeds this first guess to the discriminator. If 
the discriminator, equipped with a large database of real faces, can distinguish the 
generated image from the real faces, the discriminator provides this feedback to the 
generator. The generator then updates its initial guess and feeds this update to 
the discriminator in a second round. This process continues with the generator and 
discriminator competing in an adversarial game until an equilibrium is reached when 
the generator produces an image that the discriminator cannot distinguish from real 
faces. 

The various versions of StyleGAN are open source, with a fully functioning version of 
StyleGAN2 available at https://thispersondoesnotexist.com, where each page reload 
yields a new synthesized face. Shown in Figure 2 (bottom) are representative examples 
of StyleGAN2-generated faces. 

Because this process is randomly seeded, it is not possible to control the properties of 
a synthesized face (skin tone, age, gender, etc.). A variant of this synthesis pipeline, 
however, allows for a stylized mixing of facial properties. The five faces shown in 
Figure 3(c), for example, are generated by mixing the skin/hair tones of the face in panel 
(a) with the gender/age of the faces in panel (b). This type of controlled generation 
boosts the power of these synthesis techniques. Arbitrary images and styles can also 
be stylized. For example, CycleGAN can transform a cityscape photo into the style of the 
impressionist Monet, replace colorful trees with snow-capped trees to make a fall-time 
landscape appear to be shot in the winter, or change horses to zebras or vice versa (Zhu 
et al. 2017). While this GAN is not necessarily focused on synthesizing new faces or 
scenes, it can convincingly alter the semantic meaning of a photo. 

Even more powerfully, this stylizing can be driven by text-based descriptions 
alone (Razavi, Van den Oord, and Vinyals 2019; Radford et al. 2021; Bau et al. 2021). 
For example, DALL-E3—a 12-billion parameter version of the text-synthesis engine GPT-
3 (Brown et al. 2020)—is trained to synthesize images from text descriptions. Text de-
scriptions ranging from “a photo of alamo square, san francisco, from a street” to “an 
armchair in the shape of an avocado” and “an emoji of a baby penguin wearing a blue 
hat, red gloves, green shirt, and yellow pants” generate eerily pertinent images. 

3. https://openai.com/blog/dall-e 

https://thispersondoesnotexist.com
https://openai.com/blog/dall-e
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Figure 3: Mixing the skin/hair tones of the face in panel (a) with the gender/age of the 
faces in panel (b) yields a controlled styling of the synthesized faces in panel (c) (Karras, 
Laine, and Aila 2019). 

2.3 Video 

Video-based deep fakes take on one of several different forms: lip sync, face swap, and 
puppet master. Before discussing these video manipulations, I will briefly review the 
several decade history that predates deep-fake videos. 

Before there were deep neural networks, GANs, massive data sets, and unlimited 
compute cycles, Chris Bregler and colleagues created what would now be called lip-
sync deep fakes (Bregler, Covell, and Slaney 1997). In this seminal video-rewrite 
work, a video of a person speaking is automatically modified to create a video of them 
saying things not found in the original footage. After automatically extracting from each 
original video frame the mouth region and associated spoken phoneme, the application 
reorders the frames to match the desired text to be spoken. The mouth in the reordered 
frames is then stitched into the original video, correcting for differences in head position 
and orientation. The resulting image quality and resolution were generally lower than 
today’s standards, but the results were nevertheless impressive. 

Although the disinformation landscape 20 years ago looked radically different than 
today, and there were clear, positive uses of video rewriting for entertainment-related 
applications like movie dubbing, this work spawned prescient and early discussions of 
trust in the age of digital manipulation. 

Video: lip sync. A minute-long video of what appears to be former President Obama 
saying things like “President Trump is a total and complete dip****” was part of famed 
actor and filmmaker Jordan Peele’s 2018 public service announcement (PSA) on the 
dangers of fake news and the then-nascent field of deep fakes.4 The PSA concludes 
with a Peele-controlled Obama saying “how we move forward in the age of information 
is gonna be the difference between whether we survive or whether we become some 
kind of f***ed up dystopia.” 

Peele’s video was a particularity well executed example of video rewriting’s suc-
cessor, the machine-learning-powered, lip-sync deep fake (Suwajanakorn, Seitz, and 
Kemelmacher-Shlizerman 2017), itself the culmination of a rich literature spawned by 
Bregler et al.’s original work. Using hours of authentic video of President Obama and 
an arbitrary audio track (either synthesized or impersonated), a lip-sync deep fake gen-
erates a synchronized video track of Obama saying anything the creator wants him to. 
The complete synthesis pipeline consists of four primary steps: (1) a recurrent neu-
ral network is trained to learn a mapping between an audio track and an outline of the 
mouth shape that is consistent with the audio; (2) a detailed image of the mouth re-

4. Deep-fake Obama: https://www.youtube.com/watch?v=cQ54GDm1eL0 

https://www.youtube.com/watch?v=cQ54GDm1eL0
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gion (including the nose, cheeks, mouth, and chin) is synthesized by blending mouth 
regions from the training video to match the estimated outline shape; (3) the synthe-
sized mouth region is blended onto a retimed training video modified so that the head 
motion is consistent with the audio (e.g., the head is typically still when there is a pause 
in the speech); and (4) the jaw line is warped to match the shape and position of the 
chin. 

A related text-based video editing technique permits the addition, removal, and 
alteration of words in a video from, for example “she sells seashells by the sea shore” to 
“she sells ice cream by the sea shore” (Fried et al. 2019). This technique uses a similar 
approach to lip-sync deep fakes in which new words are assembled from other parts of 
the original video and blended back into the video to seamlessly replace another word 
or phrase. 

Video: face swap. TikTok’s @deepTomCruise5 is an impressive example of a face-swap 
deep fake in which one person’s identity, from eyebrows to chin and cheek to cheek, 
is replaced with another. An early and representative incarnation of this type of deep 
fake performs a face swap in which, for each video frame of identity A, a video frame is 
synthesized where the original identity is swapped with a new identity B (Nirkin, Keller, 
and Hassner 2019). This technique consists of three basic steps: (1) synthesize an 
image of B in the same head pose and expression as A; (2) fill in any missing facial or hair 
pixels that arise from the synthesis step; and (3) blend the synthesized face B into the 
original frame to replace the identity of A. By repeating this process frame after frame, 
one person’s identity is swapped with another. This technique works best when there 
are many images of the co-opted identity B with different facial expressions and head 
poses. 

Because face-swap deep fakes only replace the facial region, they are most convincing 
when the imposter’s hair, body, and voice are similar to the identity being co-opted as 
in TikTok’s @deepTomCruise, compared to, for example, the face-swap deep fake of 
Nicolas Cage replacing Julie Andrews as she spins on the mountain top singing “The 

6Hills Are Alive” in the classic The Sound of Music. 

A number of open-source implementations for creating face-swap deep fakes are 
freely available, including faceswap-GAN,7 faceswap,8 FaceSwap9, and DeepFace-
Live10. 

Video: puppet master. In this type of deep fake, the head movements and facial ex-
pressions of one person (the puppet master) are transferred, in real time, to another 
person (the puppet) (Justus Thies et al. 2016; Nagano et al. 2018; Kim et al. 2018; J. 
Thies et al. 2018; Siarohin et al. 2019). Unlike lip-sync deep fakes (which only modify 
the mouth region), or face-swap deep fakes (which only modify the eyebrows to chin and 
cheek to cheek), a puppet-master deep fake synthesizes the entire head, which is both 
more difficult and more compelling because it preserves more features of the identity 
being co-opted. 

Face2Face (Justus Thies et al. 2016), an early and representative puppet-master 
technique, takes as input videos of the puppet master (A) and the puppet (B) and 
transfers the facial expressions and head movements from A to B. This synthesis 
consists of three basic steps: (1) the facial expressions (e.g., mouth open, eyebrows 

5. https://www.tiktok.com/@deeptomcruise 
6. https://www.youtube.com/watch?v=MHkZEpfUnAA 
7. https://github.com/shaoanlu/faceswap-GAN 
8. https://github.com/deepfakes/faceswap 
9. https://github.com/MarekKowalski/FaceSwap 
10. https://github.com/iperov/DeepFacelive 

https://www.tiktok.com/@deeptomcruise
https://www.youtube.com/watch?v=MHkZEpfUnAA
https://github.com/shaoanlu/faceswap-GAN
https://github.com/deepfakes/faceswap
https://github.com/MarekKowalski/FaceSwap
https://github.com/iperov/DeepFacelive
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raised, brow furrowed, etc.) of identities A and B are tracked throughout the video 
sequences; (2) the expression of identity A is transferred to B by deforming the facial 
expression of identity B, which may include synthesizing the mouth’s interior when, for 
example, A’s mouth is open but B’s mouth is closed; and (3) the transformed face is 
composited back into the original video sequence. 

Open-source implementations for creating puppet-master deep fakes are available, 
including avatarify.11 

Puppet-master deep fakes have expanded from head to full-body synthesis (Chan et 
al. 2019). With an input video of person A dancing, and a few minutes of person 
B performing some simple motions, the system transfers A’s dance moves onto B, 
controlling them like a puppeteer might. Although the resulting videos currently have 
fairly obvious visual artifacts, this full-body puppeteering is likely a sign of things to 
come: as facial synthesis is perfected, it will be natural to move to upper-body and then 
full-body synthesis. 

3 Using & misusing deep fakes 

Applications of synthetic media do not always fall neatly into one category or another: 
good/bad, ethical/unethical, legal/illegal (Hancock and Bailenson 2021). In this section 
I discuss a range of applications and related ethical or legal concerns. With a few 
exceptions, we have a mostly incomplete understanding of how (or even if) certain forms 
of synthetic media should be deployed, although Danielle Citron and Robert Chesney 
have written thoughtfully on this topic (Chesney and Citron 2019), as has Citron in her 
forthcoming book (Citron 2022). 

3.1 Accessibility 

Synthesized voices hold tremendous power to restore speech to those who have lost 
it, especially when it is done in their original voice. After losing his natural voice due to 
throat cancer surgery in 2015, the actor Val Kilmer explained, “My voice as I knew it was 
taken away from me. People around me struggle to understand me when I’m talking.” 
Sonantic, a UK-based firm, cloned Kilmer’s voice, allowing him to speak in a voice that is 
recognizable to him and those around him.12 Although several hours of audio recording 
are usually required to recreate a voice, Kilmer’s voice was recreated with only 30 
minutes of audio (due to movie licensing constraints). With a simple desktop text-to-
speech interface, he can now convert his written words into sound. 

3.2 Entertainment 

Over the past several decades the computer-graphics community has been perfect-
ing software- and hardware-rendering techniques for creating increasingly realistic 
computer-generated imagery (CGI) (Holmes, Banks, and Farid 2016). These technolo-
gies have been most commonly employed in the entertainment industry to generate 
highly creative content ranging from short animations to feature-length films. 

The rate-limiting steps in CGI are the painstaking building of detailed three-dimensional 
scenes followed by computationally intensive rendering of each video frame. Although 
training a synthetic-media system can be time consuming and computationally 
intensive, once trained, the synthesis engine produces content relatively quickly and 

11. https://github.com/alievk/avatarify-python 
12. https://youtu.be/OSMue60Gg6s 

https://github.com/alievk/avatarify-python
https://youtu.be/OSMue60Gg6s
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free of the type of manual, time-consuming work required in CGI animation. This makes 
synthetic content highly desirable in the entertainment industry. 

Today’s synthesis engines are not yet capable of the type of fine control afforded by CGI, 
but deep fakes have already appeared in feature films. For example, younger versions 
of performers were synthesized in the recent blockbusters Rogue One: A Star Wars 
Story and The Irishman. The startup Synthesia uses similar technology to automatically 
and more realistically dub movies, eliminating the distracting audio/mouth de-
synchronization that occurs in traditional movie dubbing. This technology allowed 
famed footballer David Beckham to record a PSA in nine different languages for the fight 
against malaria.13. 

In a more ethically complex application, the documentary Roadrunner, about the life 
and tragic death of Anthony Bourdain, contained a few lines of dialogue in a synthesized 
version of Bourdian’s voice reading an email to a friend (“...and my life is sort of s**t 
now. You are successful, and I am successful, and I’m wondering: Are you happy?”). 
The use of a synthesized voice was only revealed after a New Yorker reporter asked 
the filmmaker how he acquired this clip (Rosner 2021). When asked about the ethical 
boundary of synthesizing a deceased person’s voice for a documentary, the filmmaker 
responded somewhat dismissively, “We can have a documentary-ethics panel about it 
later.” 

3.3 Immortality 

In early 2018, 17 students were murdered and another 17 injured in a horrific school 
shooting in Parkland, Florida. Some two and a half years later, as part of a gun-safety 
voting campaign, Manuel and Patricia Oliver, the parents of slain 17-year-old Joaquin, 
created a deep-fake video of their son in which he is seen saying, in part: “I’ve been 
gone for two years and nothing’s changed, bro. People are still getting killed by guns. 
Everyone knows it, but they don’t do anything. I’m tired of waiting for someone to fix 
it. The election in November is the first one I could have voted in, but I’ll never get 
to choose the kind of world I wanted to live in, so you’ve got to replace my vote.” This 
deeply emotional and powerful video was met with mixed reactions. Some felt it crossed 
certain (perhaps not yet clearly delineated) ethical lines, while others felt the parents 
were within their rights to use their son’s likeness to promote a cause that might have 
prevented his senseless death. 

In a related theme, in 2021 the site myheritage.com14 released Deep Nostalgia, a deep-
fake technology that allows users to create short animations from a single photo of a 
relative. While many thought the short (audio-free) video clips were charming, some 
expressed concern about what they perceived as the inevitable next step in which voice 
would be added to create interactive avatars of deceased relatives (or anyone else). 
For those with an online presence that provides easy access to their likeness, voice, 
mannerisms, and even ways of thinking, it is perhaps reasonable to think digital avatars 
could be created to provide an everlasting digital likeness. Will we have to specify 
upon our death if we want to be kept virtually alive? Will all of this be a good or bad 
thing (Öhman and Floridi 2017, 2018)? 

3.4 Marketing 

In March 2022, Stanford Internet Observatory researchers Renée DiResta and Josh 
Goldstein uncovered more than 1,000 LinkedIn accounts with synthetically generated 

13. https://youtu.be/QiiSAvKJIHo 
14. https://www.myheritage.com/deep-nostalgia 

https://youtu.be/QiiSAvKJIHo
https://www.myheritage.com/deep-nostalgia
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profile pictures (Bond 2022). These accounts also appear to list fictitious job 
experiences and educational credentials. While fake profiles and padded resumes are 
nothing new, these accounts seem to have been created as part of a marketing scheme 
for companies of varying sizes. These fictitious accounts sent messages to LinkedIn 
users highlighting common associations or backgrounds and then pitched a product or 
service. The fake profiles spanned more than 70 employers, but their source seems to 
have been an outside marketing firm hired to bolster sales for their clients. According to 
LinkedIn’s Professional Community Policies, inauthentic profiles, including inauthentic 
pictures, violate their rules: “Do not use an image of someone else, or any other image 
that is not your likeness, for your profile photo.” The offending accounts were removed 
shortly after LinkedIn was notified of their existence. 

While various actors have long engaged in online and offline marketing schemes, their 
presence on a professional network, and their flagrant misrepresentations, perhaps 
signal a troubling trend. As synthetic media becomes more realistic, it seems to be 
only a matter of time before synthetic audio and video will also be used for a range of 
marketing schemes, from the above to the below board. 

3.5 Politics 

Yoon Suk-yeol won the 2022 South Korean presidential election by a paper-thin 0.8% 
margin. Some have attributed part of his success to an unconventional digital strategy. 
Analysts have long feared that political candidates would use deep fakes to damage 
their opponents. It was therefore somewhat surprising to see the first high-profile 
political deep fakes of a candidate being created by the candidate’s own campaign. 
Starting with hours of studio-recorded video footage of Yoon, the campaign created 
what it called “AI Yoon.” AI Yoon offered voters an interactive experience; the AI version 
of the candidate was able to answer questions with snappy, meme-ready responses. For 
instance, when a potential voter asked “President Moon Jae-in and (rival presidential 
candidate) Lee Jae-myung are drowning. Who do you save?” AI Yoon retorted: “I’d 
wish them both good luck.” Real Yoon may not have been able to be so snarky. Attracting 
millions of views, AI Yoon appears to have been a hit and seems to have made a middle-
aged, establishment candidate more appealing to young voters. 

As political candidates flock to social media, AI Yoon may be a harbinger of things 
to come. It remains to be seen how campaigns and voters will navigate this new 
medium in which AI-based candidates may be able to do and say things that real 
candidates cannot, or create highly customized versions of themselves to attract 
different demographics. 

3.6 Disinformation 

While some analysts worry that deep fakes would amplify existing disinformation 
campaigns, plunging users into even deeper wells of lies and conspiracies (Garfinkle 
2020), so far such campaigns have been fueled by cheap fakes, mis-attribution fakes, 
and algorithmic amplification (Farid 2021). For example, in mid-May of 2020, in 
the midst of the global pandemic, 20% of the US public believed Bill Gates was 
planning to use COVID-19 to implement a mandatory vaccine program with tracking 
microchips (Nightingale and Farid 2020). This conspiracy spread through simple 
social media posts; deep fakes were not involved. The far-reaching, far-right QAnon 
conspiracy claims, among other things, that a cabal of Satan-worshipping cannibalistic 
pedophiles and child sex traffickers plotted against Donald Trump during his term as 
president. A poll administered in 2020 found that 37% of Americans were unsure 
whether QAnon was true or false, and 17% believed it was true (Newall 2020). Again, 
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this conspiracy was created and spread through social media posts, not deep fakes. A 
pair of videos depicting Speaker Nancy Pelosi looking and sounding inebriated during 
public appearances were not—as was often mistakenly reported—deep fakes. The low-
tech videos were created by simply slowing the original footage by 25% to simulate 
slurred speech (Spencer 2020). Sophisticated technology was not needed to convince 
millions that Pelosi was “blowed [sic] out of her mind,” as the accompanying social 
media post claimed. 

Deep fakes are not the common thread connecting Bill Gates’s COVID-19 microchips, 
QAnon’s Satan-worshipping cannibals, and the litany of conspiracies and outright lies 
polluting the internet. The common thread is the more mundane recommendation 
algorithms that aggressively promote the internet’s flotsam and jetsam to drive user 
engagement and, in turn, ad revenue (Farid 2021). Where manipulated media is 
playing a role, it is typically in the form of cheap fakes consisting of simple Photoshop-
style manipulations or slowing a video to slur speech, and misattribution fakes 
consisting of mislabeling a photo or video as purportedly being from a different time 
or place. As the quality and sophistication of synthetic media continues to improve, 
however, it is reasonable to predict that deep fakes may be used to fuel disinformation 
campaigns. 

A study carried out in India, for example, found that fake videos bolstered the credibility 
and virality of misinformation more than audio or text alone (Sundar, Molina, and Cho 
2021). The study found that socio-demographic factors were relevant (categorized as 
urban vs. rural, an acknowledged crude proxy for a range of user differences), with urban 
users somewhat less likely to find fake stories and videos credible or share them. These 
results fit the conventional wisdom that “seeing is believing.” 

A recent study, however, challenges this conventional wisdom (Groh, Sankara-
narayanan, and Picard 2022). After seeing or reading a short political statement by 
either Joe Biden or Donald Trump, participants were asked to determine if the state-
ment could be attributed to either individual. Participants more accurately assessed 
the truthfulness of political speeches from video than from written transcripts. These 
results cannot be explained by unrealistic fake videos because users were not able to 
reliably detect video manipulations, and were less capable of assessing truthfulness in 
closed-captioned silent videos. This contradictory finding may be the result of famil-
iarity with the speakers and what they have said or are likely to say, as was the case in 
an earlier study (Sundar, Molina, and Cho 2021) which found that familiarity with state-
ments reduced perceived credibility. 

Regardless of how or even if they will play a direct role in fueling disinformation, deep 
fakes have already had an indirect impact on fueling disinformation in the form of the 
liar’s dividend (Chesney and Citron 2019). The liar’s dividend posits that when we 
enter a world where any audio, image, or video recording can be manipulated, then 
nothing has to be real, providing the liar with the double-fisted weapon of both spreading 
falsehoods and using the specter of digital manipulation to cast doubt on the veracity of 
any inconvenient truths. For example, candidate Trump initially apologized in 2016 for 
his earlier misogynistic remarks caught on the Access Hollywood tape. Just a year later, 
President Trump deployed the liar’s dividend, claiming the recording was fake. 

The power of the liar’s dividend also extends to those receiving information that may 
run counter to their world view. In one study, for example, informing participants about 
deep fakes did not enhance their ability to detect them, but did empower them to 
dismiss real videos as fake (Ternovski, Kalla, and Aronow 2022). 
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3.7 War 

In the early days of Russia’s February 2022 invasion of Ukraine, President Zelenskyy 
warned the world that Russia’s digital disinformation machinery would create a deep 
fake of him admitting defeat and surrendering. A few weeks later a deep fake of 
him appeared with just this message. This video was quickly debunked thanks to the 
rather crude audio and video and to Zelenskyy’s pre-bunking. This type of deep fake, 
however, is likely just the beginning of a new digital front that we might expect in future 
conflicts. 

On the other side, a video released and promoted by the Ukrainian government of the 
Eiffel Tower destroyed by missiles, and Parisian neighborhoods consumed in smoke, 
sirens, and screams amplified by overhead jets, ends with a disclosure that the video 
is not real and the dire warning “Just think if this were to happen in another European 
capital. Close the sky over Ukraine. If we fall, you fall.” While nobody can blame the 
Ukrainians for releasing a dramatic and powerful video with the goal of rallying global 
support, circulating a manipulated video makes it harder to obtain reliable information, 
particularly in the fog of war. It also plays into the hands of those attempting to deny 
visual evidence of Russian aggression and war crimes: if this video could be faked, the 
average person may wonder, what else is fake? 

3.8 Science 

Cases of scientific misconduct involving manipulated images began to rise in early 2000 
(Farid 2006; Bik, Casadevall, and Fang 2016; Acuna, Brookes, and Kording 2018). 
Before the advent of GANs, unscrupulous researchers could employ Photoshop and 
similar photo-editing software to edit biomedical imagery to subtly or dramatically 
change the interpretation of their scientific results. Twenty years later, the same 
GAN machinery that can be used to synthesize faces (see above) can be adapted to 
synthesize different types of biomedical imagery (L. Wang et al. 2022). These new 
synthesis techniques further lower the barriers to committing image-based scientific 
fraud, and may make it even more difficult to computationally or perceptually detect 
these manipulations. 

3.9 Fraud 

In early 2020, a United Arab Emirates’ bank was swindled out of $35 million. A 
bank teller was convinced to transfer the funds after receiving a phone call from the 
purported director of a company who the bank manager knew and with whom he had 
previously done business. The voice on the other end of the phone instructed the 
manager to transfer the funds as part of a corporate acquisition. Because the request 
was consistent with previously received emails describing the acquisition, and since the 
voice was familiar to him, the bank manager transferred the funds. It was later revealed 
that the voice was AI-synthesized made to mimic the director’s voice. 

This was not the first time AI-synthesized content had been used to steal large sums 
of money. In 2019, a UK-based company suffered a similar fate when an imposter 
used an AI-synthesized voice to steal $243,000 in a similar type of scam. These two 
incidents are almost certainly the canaries in the coal mine. As synthesized audio 
and video continue to improve in quality and accessibility, it is reasonable to predict 
that they will be used to commit future fraud. Of particular concern will be attacks 
that combine sophisticated synthesized content with individualized attacks powered 
by personal data leaked in all-too-common data breaches, as has occurred in recent 
phishing scams. 
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3.10 Non-consensual sexual imagery 

The term “deep fake” comes from the moniker of a Reddit user who in 2017 used the 
then nascent AI-synthesis technology to create non-consensual sexual imagery (often 
referred to by the misnomer “revenge porn,” suggesting somehow that the women 
depicted inflicted a harm deserving of revenge). Targeting primarily female celebrities, 
politicians, public figures, and sometimes citizens who attract unwanted attention, this 
abusive application immediately tarnished the reputation of the underlying synthesis 
technologies. 

By 2019, the $50 DeepNude app allowed a user to digitally remove clothing from any 
image of a woman, rendering a detailed nude photo. The creator removed the app 
shortly after its release due to wide-spread criticism. However, several copycats quickly 
emerged. There are now multiple apps and websites to create non-consensual sexual 
imagery with tag lines like “the superpower you always wanted,” “see any girl clothless 
[sic] with the click of a button,” “undress anyone online,” and, of course, “...we also do 
not take any responsibility for images created with this software.” 

There have been a number of legal responses to this weaponization of technology 
against (primarily) women (Citron and Franks 2014; Citron 2022). In 2019, the US 
state of Virginia expanded its 2014 “revenge porn” laws to include synthesized or 
manipulated content, making it illegal to share nude photos or videos of anyone— 
real or fake—without their permission. As of 2022, California, Hawaii, and New York 
have similar restrictions. In 2021, Australia amended its laws to include synthesized 
or manipulated content; violations can incur both criminal charges and monetary 
fines. 

Yet it remains unclear whether legislation can rein in these abuses. Hollywood actress 
Scarlett Johansson—a frequent target of non-consensual sexual imagery—told the 
Washington Post, “I think it’s a useless pursuit, legally, mostly because the internet is a 
vast wormhole of darkness that eats itself.” 

4 Detecting: Perceptual 

From investigative journalists to amateur sleuths, law enforcement, and the average 
citizen browsing their social media feed, we often have to rely on our own senses and 
reasoning to assess whether an image or video is real or fake. In this section, I review 
recent studies describing how well human observers can distinguish between real and 
fake audio, image, and video. 

4.1 Audio 

Using audio samples from the 2019 ASVspoof Challenge (X. Wang et al. 2020), a recent 
study examined individuals’ ability to detect audio deep fakes (Müller, Markert, and 
Böttinger 2021). The study participants (n = 200) correctly classified 80% of the audio 
samples (7,355 real and 4,919 synthesized). The study author’s AI-based detector 
significantly outperformed the human participants, but where the AI system struggled 
on specific audio samples, humans excelled and vice versa. 

Voice conversion (VC) encompasses computational techniques for changing a recorded 
voice to sound like another person’s voice, without changing the semantic meaning 
of what was originally spoken. VC predates deep fakes by 65 years, although recent 
efforts have incorporated deep learning (Sisman et al. 2020). The Voice Conversion 



Journal of Online Trust and Safety 13 

Challenge (VCC) 15 is a semiannual event inviting researchers to develop and submit VC 
techniques, which are evaluated for naturalness (rated from 1 = completely unnatural 
to 5 = completely natural) and speaker identity (rated on a scale of “same, absolutely 
sure,” “same, not sure,” “different, not sure,” or “different, absolutely sure”). In the 
first challenge in 2016, 200 native listeners rated the VC results from 17 submissions. 
The best-performing system received an average of 3.0 on the five-point naturalness 
scale, and 70% of the samples were judged on identity to be “same.” In the second 
challenge in 2018, 260 native listeners rated 23 submissions. The best-performing 
system received an average 4.1 naturalness score, and 80% of the samples were judged 
on identity to be “same.” In the most recent challenge in 2020, several systems 
achieved nearly perfect identity ratings, and naturalness scores continued to hover 
around 4.0. Over the years voice conversion has continually improved in quality and 
naturalness, with this trend expected to continue. 

Google’s Tactoron 2 and a modified version of DeepMind’s WaveNet technologies 
combine to convert text into a spectogram (a frequency-based representation of sound) 
and then convert the spectogram into speech. The authors of WaveNet (Van Den Oord 
et al. 2016) asked participants to rate the naturalness of their synthesized speech on a 
five-point scale (1 = Bad; 5 = Excellent). Compared to an average rating of 4.55 on real 
US English human speech, participants rated WaveNet 4.21. Real Chinese Mandarin 
speech was rated 4.21 vs. WaveNet’s 4.08. Although difficult to compare directly, these 
results are slightly better than the best-performing VCC models. 

These recent studies on the perceptual naturalness of synthesized speech suggest that 
it will soon be possible to synthesize speech that is indistinguishable from real speech. 
Synthesized English-language speech will likely arrive at this milestone first, with other 
languages following closely behind. 

While naturalness and identity are important qualities to consider in synthetic speech, 
other characteristics may also be important. For example, an interactive, automated 
conversational agent deployed to counsel those in need should sound trustworthy 
and honest. Persuasiveness may be desirable (although ethically questionable) 
for advertising and marketing (see (Dubiel et al. 2020) for an examination of the 
persuasiveness of synthetic voices.) Different speech patterns (e.g., rate, pitch, volume, 
fluency) influence their perceived persuasiveness, intelligence, and attractiveness, 
among other characteristics. As synthetic voices become more realistic, it will become 
more important to study these other perceptual qualities. 

4.2 Images 

Although the GANs described in Section 2 can synthesize any type of image (people, 
cats, planes, etc.), I focus on images of people, which are arguably some of the most 
intriguing. Three recent perceptual studies (Nightingale and Farid 2022) examined the 
ability of trained and untrained observers to distinguish between real and synthesized 
faces. Shown in Figure 2 are representative examples from the full dataset of 400 real 
and 400 synthetic faces. The synthetic faces were generated using the state-of-the-art 
StyleGAN2 (Karras et al. 2020), ensuring diversity across gender, race, and apparent 
age. For each synthesized face, the corresponding real face was matched in terms of 
gender, age, race, and overall appearance. 

In the first study, 315 paid, online participants were shown—one at a time—128 faces, 
half of which were real, and asked to classify each as either real or synthetic. The 
average accuracy on this task was 48.2%, close to chance performance of 50%. While 

15. http://vc-challenge.org 

http://vc-challenge.org
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participants were equally likely to say a real face was synthetic as vice versa, there was 
a significant gender × race interaction: synthetic white faces were harder to distinguish 
than other races, and synthetic white male faces were harder to distinguish than female 
white faces. This racial and gender difference is hypothesized to be the result of male 
white faces being over-represented in the StyleGAN2 training data set, leading to their 
more realistic appearance. 

In a second study, 219 new participants were initially provided with a brief training on 
examples of specific rendering artifacts that can be used to identify synthetic faces. 
Throughout the experiment, participants were also provided with trial-by-trial feedback 
informing them if their response was correct. This training and feedback led to a slight 
improvement in average accuracy from 48.2% to 59.0%. 

A third study examined if participants were able to glean any anomalous properties of 
synthetic faces as an indirect measure of realism. A new set of 223 participants rated 
the trustworthiness of faces on a scale of 1 (very untrustworthy) to 7 (very trustworthy). 
The average rating for synthetic faces (4.82) was higher than for real faces (4.48). 
Although only 7.7% more trustworthy, this difference is statistically significant. Black 
faces were rated as slightly more trustworthy than South Asian faces, but otherwise 
there was no effect across race, but women (4.94) were rated as significantly more 
trustworthy than men (4.36). The authors hypothesized that synthetically generated 
faces are more trustworthy than real faces because synthesized faces tend to look more 
like average faces—an artifact of the GAN generation process—which themselves are 
deemed more trustworthy (Sofer et al. 2015). 

The finding that synthetically generated faces are nearly indistinguishable from real 
faces is consistent with those of other studies (Hulzebosch, Ibrahimi, and Worring 2020; 
Lago et al. 2021). This result, however, is not without its caveats. The 400 synthetic 
faces used in (Nightingale and Farid 2022), for example, were manually selected 
from a larger set of images to only include those with a mostly uniform background 
and without any obvious rendering artifacts. This culling makes the perceptual task 
harder. In practice, this means that some synthesized faces from, for example, https: 
//thispersondoesnotexist.com, will be easily detected. Because the synthesis process 
is so fast and easy, however, it is reasonable to assume that a patient fraudster can apply 
the same culling process to avoid any obvious visual artifacts. 

While synthesized faces are highly realistic, there are some clues that can help 
distinguish them from real faces: (1) StyleGAN-synthesized faces have a common 
structure consisting of a mostly front-facing person from the neck up and with a mostly 
uniform or nondescript background (Figure 4); (2) facial asymmetries are a tell-tale sign 
of a synthetic face—this is often seen in mismatched earrings (Figure 4(a)), or glass 
frames; (3) when viewing a face, we tend to focus most of our attention in a “Y”-pattern 
shifting our gaze between the eyes and mouth, often missing some glaring artifacts in 
the background which may contain physically implausible structures (Figure 4(b)); and 
(4) StyleGAN-synthesized faces enforce a facial alignment in the training and synthesis 
steps resulting in the spacing between the eyes being the same and the eyes being 
horizontally aligned in the image. Shown in Figure 4(c), for example, is a superposition 
of all eight faces shown in the lower portion of the figure, demonstrating that the eyes 
are nearly perfectly aligned across the synthesized faces. 

4.3 Video 

While synthesized faces are nearly indistinguishable from real faces, it is more 
technically challenging to synthesize videos in which a person’s identity is co-opted 
to make them say something they never did. More artifacts are also likely to be left 

https://thispersondoesnotexist.com
https://thispersondoesnotexist.com
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Figure 4: Eight synthesized faces (bottom) and three common synthesis artifacts: 
(a) asymmetric earrings; (b) physically implausible background structures; and (c) a 
superposition of all eight faces reveals a nearly perfectly alignment of the eyes. 

behind in the individual video frames as well as the temporal relationship between video 
frames, and the accompanying audio. 

A recent set of perceptual studies (Groh et al. 2022) examined untrained observers’ 
ability to identify 50 real and synthesized 10-second videos from the Deepfake 
Detection Challenge (DFDC) (Ferrer 2020) of unknown actors making uncontroversial 
statements in nondescript locations. In one experiment, participants viewed a single 
video and were asked to categorize it as real or synthesized, and specify how confident 
(on a scale of 50% to 100%) they were in their assessment. Each response (normalized 
from 0 to 1) was scored proportional to correctness: a correct response with 85% 
certainty, for example, yields a response score of 0.85, whereas an incorrect response 
at this level of certainty is scored 1.00 − 0.85 = 0.15. Participants achieved an average 
score of ≈0.66, compared to a chance performance of 0.50. Assigning to a video with a 
score greater than 0.50 as “correct,” participants correctly identified ≈66% of the deep-
fake videos (in another experimental condition, participants achieved greater accuracy 
when a real and corresponding fake video were presented side by side). By comparison, 
the leading DFDC predictor correctly identified 80% of the deep-fake videos, although 
this accuracy is significantly higher than the some 65% accuracy achieved by the top-
performing model on the entire DFDC holdout dataset of 4,000 videos. 

Pooled responses from all participants yields an improved crowd score of ≈0.80 and 
the number of correctly identified videos increases to 80%, nearly the same as the 
top-performing predictor. This crowd wisdom suggests that identification errors are at 
least somewhat independent, with some participants noticing artifacts that others do 
not. 

In a second condition, after specifying their confidence in their assessment, participants 
were shown the prediction by the top-performing DFDC model and given the opportunity 
to update their response. Participants updated their response in 24% of the trials, half of 
which led to a crossing of the 50% confidence threshold. In this collaborative condition, 
participants correctly identified 73% of the deep-fake videos, up from 66% in the first 
condition. 

Although perceptual detection of deep-fake videos is—unsurprisingly—harder than still 
images, participants have some ability to perform this task. There is also wisdom in the 
crowd: pooling responses from multiple, independent moderators improves accuracy, 
as does giving moderators more information from computational predictors (discussed 
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in the next section). 

5 Detecting: Computational 

Human observers can distinguish between real and fake content with varying degrees of 
efficacy. If past trends continue, it is reasonable to predict that synthetically generated 
audio, image, and video will eventually become indistinguishable from reality. It thus 
seems reasonable to look for relief from the computational machinery used to create 
this content. In the remainder of the section I discuss representative examples of recent 
audio-, image-, and video-synthesis detection techniques. 

5.1 Audio 

The computational detection of synthesized human speech is relatively nascent 
compared to detection techniques for images and videos (see below). However, speaker 
recognition (what somebody is saying) and speaker identification (who is saying it) 
have been well studied, and many of the underlying computational approaches used to 
identify speakers have been shown to be capable of distinguishing real from synthetic 
speech. 

Audio: artifact based. The most common approach to detecting synthetic speech is to 
quantify artifacts introduced by the audio-synthesis pipeline. This approach consists 
of three basic parts: (1) the raw audio signal is transformed into a representation 
that reveals discriminating features; (2) specific features are measured from the 
transformed signal; and (3) any of a number of pattern-recognition techniques is trained 
to distinguish the extracted features between real and synthetic speech. 

The popular mel-frequency cepstral coefficients (MFCCs), for example, begin by 
transforming an audio signal into the frequency (Fourier) domain, followed by a series of 
linear and non-linear filtering to yield a transformed sound in which the representation 
of different frequencies more closely matches human perception. Shown in Figure 1 is a 
sample audio (top panel) and the corresponding mel-spectrum representation (bottom 
panel), from which the cepstral coefficients are extracted. The MFCCs have proven 
effective at a variety of tasks from speaker recognition to automatic music retrieval. 
Pairing MFCCs extracted from real and synthesized speech along with a variety of 
pattern recognition techniques from logistic regression to support vector machines, or 
neural networks, yields a predictor of audio authenticity. 

The plethora of audio detection techniques vary in their specific choices of initial 
transform, feature extraction, and pattern recognition machinery. These three steps 
can also be incorporated into one end-to-end, learning-based system typically using 
deep neural networks (see, for example, (Chen et al. 2020)). Below we review the 
state-of-the-art detection accuracy of these types of predictors as reported in a recent 
semiannual challenge. 

Audio: statistical. At the time of writing, the top ten most populous countries (in 
millions) are: China (1,439), India (1,380), United States (331), Indonesia (273), 
Pakistan (220), Brazil (212), Nigeria (206), Bangladesh (164), Russia (145), and Mexico 
(128). Five of these populations begin with the number 1 (China, India, Bangladesh, 
Russia, and Mexico), four begin with 2, and one begins with 3. Compared to a uniform 
distribution in which each digit would appear with an 11.1% frequency, this lopsided 
distribution of first digits generalizes to all the world populations in which 1 appears with 
a ≈30% frequency, 2 with a ≈18% frequency, followed by a rapidly decaying frequency 
for subsequent digits, until 9 appears with only ≈5% frequency. This distribution 
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(𝑃(𝑑) = log10(1 + 1/𝑑)) of first digits 𝑑—termed Benford’s Law (Fewster 2009)—has been 
observed in a large number of data sets from world populations to river lengths, house 
prices, and tax returns. 

This exponentially decaying distribution of first digits has also been observed in human 
speech (Hsu and Berisha 2022). An audio signal is subjected to a standard frequency 
decomposition from which the first digits of human speech are found to nearly perfectly 
follow Benford’s law. Synthetically-generated speech deviates from this distribution. 
On an admittedly small dataset of natural and synthetic speech, deviations from 
Benford’s first-digit distribution achieves a 91% classification accuracy. Although it is 
unlikely to generalize to all forms of synthetic audio, this technique can be a useful tool 
in any computational detection toolkit. 

Audio: evaluation. Starting in 2015, and running every 2 years, the Automatic 
Speaker Verification Spoofing and Countermeasures challenge (ASVSpoof, https:// 
www.asvspoof.org) invites researchers to develop and submit detection techniques to 
detect fake, spoofed, or synthesized speech, with the goal of developing automatic 
speaker verification (ASV) systems. In the most recent 2021 challenge (Yamagishi et 
al. 2021), the top-performing deep-fake audio classifier achieved an equal error rate 
of 15.6% (15.6% of synthetic audio clips were misclassified as real, and 15.6% of real 
audio clips were misclassified as synthetic). This relatively low performance highlights 
the continued challenge of detecting synthetically generated human speech. 

5.2 Image 

The computational detection of synthesized images can be partitioned into two 
basic categories: (1) learning based, in which features that distinguish real from 
synthetic content are explicitly learned by any of a range of different machine-learning 
techniques and (2) artifact based, in which a range of low-level (pixel-based) to 
high-level (semantic-based) features are explicitly designed to distinguish between 
real and synthetic content. This section provides an overview of a representative 
example of these computational techniques and discusses their advantages and 
disadvantages. 

Image: learning based. A typical image-forensic classifier, designed to distinguish a 
real from a synthesized image, takes as its input a single image and outputs a real-valued 
number corresponding to the likelihood that the input image is synthetically generated. 
Wang et al.’s forensic classifier (S.-Y. Wang et al. 2020), for example, is based on a 
standard neural-network architecture (ResNet-50), pre-trained on a standard image 
database (ImageNet), and then refined to classify an image as real or synthesized. 
The training dataset contains 720,000 training and 4,000 validation images, half of 
which are real images; the other half are synthesized images created by ProGAN (Karras 
et al. 2017). To ensure the classifier is resilient to simple image modifications, the 
training images are augmented by standard manipulations including spatial blurring 
and JPEG compression. With an average precision16 greater than 90%, the trained 
classifier can accurately classify ProGAN synthesized images as well as those from other 
previously unseen synthesizers. Using a similar computational approach, the forensic 
classifier of Frank et al. (Frank et al. 2020) yields a similarly accurate and generalizable 
classifier. 

It is not uncommon for these types of learning-based approaches to correctly classify 
images similar to those used in training. What was more impressive was the network’s 

16. Precision is defined as the ratio TP / (TP+FP), where true positive (TP) is the rate at which a synthesized 
image is correctly classified, and false positive (FP) is the rate at which a real image is incorrectly classified as 
synthesized. 

https://www.asvspoof.org
https://www.asvspoof.org


Journal of Online Trust and Safety 18 

= + 1 
1000 

(a) (b) (c) 

Figure 5: According to his Twitter account, Andrew Walz was running for a congressional 
seat in Rhode Island. In reality, he was the creation of a 17-year-old high school 
student. Walz’s profile picture (b) was synthesized using StyleGAN2. A state-of-the-
art synthetic-media detector (S.-Y. Wang et al. 2020) would have flagged this picture 
as 87% fake. Adding a perceptually indistinguishable perturbation (c) to this image, 
however, causes the detector to classify the resulting picture (a) as 99% real (Carlini 
and Farid 2020). 

uncharacteristic ability to generalize to synthetic images that were not part of the 
training—likely because the classifiers learned an image artifact that was introduced 
when images were resized within the image-synthesis pipelines. Unfortunately, this 
means that the intentional or unintentional removal of this single artifact will render 
the classifier useless (Dong, Kumar, and Liu 2022). 

It is well established that machine-learning classifiers are vulnerable to adversarial 
attacks (Carlini and Wagner 2017): for a given classifier and input image 𝑋, it is 
possible to construct an imperceptible additive perturbation 𝑌 so that the image 𝑋 + 𝑌 is 
misclassified (Figure 5). Most strategies construct the adversarial perturbation 𝑌 with 
respect to the input 𝑋 through a gradient-descent optimization in which the adversarial, 
additive pattern is explicitly learned (Carlini and Wagner 2017). 

Shortly after their release, the two forensic-image classifiers described above were 
found not to be adversarially robust: an arbitrary image correctly classified as synthetic 
can be imperceptibly modified (Figure 5) to be misclassified as real (Carlini and Farid 
2020). These adversarial attacks are carried out assuming the attacker has (white box) 
or does not have (black box) full access to the image classifier’s parameters. White-box 
attacks reduce the area under the ROC curve (AUC) from 0.95 to ≈0.1, compared to an 
AUC of 0.5 for a chance-performing classifier. Black-box attacks reduce the AUC to ≈0.2. 
In both cases, the adversarial attacks yield a classifier that is most likely to incorrectly 
classify a real image as synthetic, and a synthetic image as real. 

The advantage of learning-based techniques is that they can uncover subtle and non-
obvious discriminatory artifacts. However, these techniques often require a significant 
amount of training data, can struggle to generalize to new synthesis techniques, and are 
vulnerable to intentional and unintentional attacks. 

Image: artifact based. It is often said that “the eyes are a window to the soul,” 
but it would be more accurate to say “the eyes are a reflection of the individual’s 
world.” Because the eye’s cornea is a partially reflective surface, it reflects back to 
the camera a glimpse into one’s surroundings. Corneal reflections have been used 
to reconstruct a view of a person’s physical surroundings (Nishino and Nayar 2004) 
and to detect physical inconsistencies in synthesized faces. Because facial synthesis 
is not necessarily aware of the axial symmetry of the face, the corneal reflection and 
pupil shape of synthetically generated faces are often—implausibly—different between 
the left and right eyes (Guo et al. 2021; Hu, Li, and Lyu 2021). Such inconsistencies 
constitute a simple, yet robust, indicator of a synthetically-generated face. 

Ocular asymmetries caused by the lack of explicit semantic knowledge in image-
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synthesis pipelines has also been exploited in the analysis of facial feature configura-
tions (Yang et al. 2019). Particularly in earlier incarnations of synthetically generated 
faces, the location of facial features (eyes, tip of nose, corners of mouth, chin, etc.) on 
synthetically generated faces was found to be different than on real faces. 

While these types of semantic artifacts are more resilient to adversarial attacks than 
learning-based approaches, facial synthesis will continue to evolve and incorporate 
this type of semantic information. These detection techniques will thus become less 
effective over time and new techniques will need to be developed that exploit different 
artifacts. This is the inevitable outcome of the cat-and-mouse game between synthesis 
and detection. 

5.3 Video 

The computational detection of synthesized videos can be partitioned into three basic 
categories: (1) learning based, in which features that distinguish real from synthetic 
content are explicitly learned by a range of different machine-learning techniques; (2) 
artifact based, in which a range of low-level (pixel-based) to high-level (semantic-
based) features are explicitly designed to distinguish between real and synthetic 
content; and (3) identity based, in which biometric-style features are used to determine 
whether the person depicted in a video is who it purports to be. This section provides an 
overview of a representative sample of these computational techniques, and discusses 
their advantages and disadvantages. 

Video: learning based. This category of computational forensic techniques leverages 
modern machine learning to extract artifacts that arise from the synthesis process that 
(typically) are not visually salient. In these supervised-learning approaches, a system 
(typically, a neural network) is trained to distinguish real from synthesized content. 
Depending on the initial representation, network architecture, and objective function 
being optimized, these networks can learn different features to distinguish the real from 
the synthesized. 

One such approach (Zhou et al. 2017) trains two separate neural networks to distinguish 
real from synthesized faces on individual video frames, and to distinguish arbitrary 
image patches taken from the same or different image. The first network is designed 
to learn artifacts that emerge directly from the synthesis process, while the second is 
designed to learn low-level properties shared by parts of an image recorded by the same 
camera (e.g., sensor noise and compression artifacts). These two predictors are then 
combined into a single classifier. This technique is somewhat effective at detecting 
synthetic faces, able to detect synthetic faces 70% of the time, but with a 5% false-
alarm rate (incorrectly classifying a real face as synthetic). 

Different network architectures lead to different features used to distinguish the real 
from the synthesized. For example, a network designed to focus on mesoscopic (inter-
mediate-scale) features (Afchar et al. 2018) rather than low-level (e.g., sensor noise) or 
high-level (e.g., facial features) characteristics yields an improved detection accuracy 
of 90% with a 5% false-alarm rate. 

A face-swap or lip-sync deep fake starts by synthesizing, one frame at a time, a face 
or mouth to digitally replace another face or mouth. The synthesized part of the face 
is then blended into the original video frame, which requires some post-processing 
image blending to remove any visible artifacts at the facial boundary. Because this 
blending introduces a slight artifact along the facial boundary, a neural network can be 
trained to detect artifacts at the boundary of a stitched face (L. Li et al. 2019). Although 
not applicable to puppet-master deep fakes, this approach yields improved detection 
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Figure 6: Ear biometrics for deep-fake detection: (a) one frame of face-swap, deep-
fake video of Tom Cruise; (b) a magnified view of deep-fake Cruise’s ear; and (c) the real 
Cruise’s ear, which has a distinctively different aural pattern (Agarwal and Farid 2021). 

accuracy to ≈95% with a 5% false-alarm rate. 

The advantage of these and related learning-based approaches is they are able to learn 
detailed and subtle artifacts resulting from video synthesis. The disadvantage is they 
typically require large amounts of labelled training data that may not always be easy to 
acquire. These techniques often struggle to generalize to new synthetic content that 
is not explicitly part of the training data set, and can—as was the case with learning-
based synthetic-image detection—be vulnerable to adversarial attacks, including simple 
laundering attacks in which the synthetic media is trans-coded and resized (Barni, 
Stamm, and Tondi 2018). 

Video: artifact based. This category of computational forensic techniques is based 
on the observation that even if a deep-fake video is visually compelling, it may 
contain spatial and temporal physiological artifacts that are not always perceptually 
obvious. 

One of the first artifact-based techniques was based on the clever observation that 
earlier incarnations of face-swap deep fakes contained unnaturally few eye blinks (Li, 
Chang, and Lyu 2018). Creating a face-swap deep fake typically requires many photos 
of the identity in a range of head poses and expressions. Yet since most photos of a 
person show them with their eyes open, synthesis techniques struggled to accurately 
capture eye blinks. The average eye blink rate in natural interview-style videos is 34 
blinks/min, while the rate in deep-fake videos is only 3.4 blinks/min; blink rate can thus 
be used to detect unnaturally few eye blinks in videos as short as 30 seconds. As is often 
the case in the cat-and-mouse game between synthesis and detection, face-swap deep 
fakes were quick to adapt: today’s higher-quality, deep-fake videos do not contain this 
artifact. 

Because a face-swap deep fake only replaces the face from the eyebrows to the chin and 
cheek to cheek, the ears in a synthesized video belong to the imposter rather than the 
co-opted identity. Aural features, which have previously been used as a biometric, can 
therefore be used to determine if they match the purported identity (Agarwal and Farid 
2021). For example, shown in Figure 6(a) is a single frame of deep-fake Tom Cruise. 
Shown in panels (b) and (c) are views of deep-fake Cruise’s ear and the real Cruise’s ear, 
in which clear differences are apparent from the detached vs. attached earlobe, and 
differences in the overall shape and structures. 
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Figure 7: Six example visemes and their corresponding phonemes. The M, B, P 
phonemes, for example, correspond to the the first syllable of “mother,” “brother,” 
or “parent,” in which the lips are pressed tightly together, leading to the viseme 
shown (Agarwal, Farid, Fried, et al. 2020). 

Although both the aural and eye-blink techniques are applicable to face-swap deep 
fakes, they are unsuitable for examining lip-sync deep fakes since only the mouth 
region and audio track are manipulated. However, since the ear and ear canal are 
related to movement of the lower jaw, which moves in response to face and head 
movements, onset of vocalization, swallowing, and laughing, dynamic aural features 
can be used to determine if the dynamics of aural motion are decoupled from the mouth 
and jaw motion, as would be likely in a lip-sync deep fake (Agarwal and Farid 2021). 
Because static and dynamic aural features are relatively complex, it is likely to be harder 
to circumvent these techniques, as was the case with eye blinking. Fully automatic 
localization and tracking of the human ear remains challenging, so this technique is best 
performed with manual assistance. 

A third physiologically based artifact is based on the shape of the mouth (viseme) 
needed to utter specific sounds (phonemes). For example, your lips have to close to 
say a word that begins with the M, B, P phoneme—mother, brother, parent (Figure 7). 
Similarly, your upper teeth close slightly on your inwardly curled lower lip to enunciate 
victor, favor—the V, F phoneme. Because lip-sync and text-to-voice deep fakes 
do not explicitly model the appearance of the mouth at the phoneme/viseme level 
(see Section Creating), these phoneme–viseme pairings are occasionally violated in 
these types of deep fakes (Agarwal, Farid, Fried, et al. 2020). While it is relatively 
straightforward to extract spoken phonemes using standard voice-to-text conversion, 
precise and automatic measurement of the mouth shape (viseme) remains challenging. 
Thus this technique also works best with manual assistance. 

Video: identity based. This category of computational forensic techniques is based 
on the assumption that as a person speaks, they have distinct facial expressions and 
movements that can be used to distinguish them from others, impersonators, and deep 
fakes (Agarwal et al. 2019; Agarwal, Farid, El-Gaaly, et al. 2020; Agarwal et al. 2021; 
Cozzolino et al. 2021). A person may, for example, raise her eyebrows when she is 
emphasizing a certain word, tilt her head upward when she is smiling, or tilt her head 
downward when she furrows her brow. 

In a face-swap or puppet-master deep fake, an impersonator is driving the facial 
expressions and head movements. It is thus difficult for the impersonator to capture 
all of the idiosyncratic mannerisms of the co-opted identity. Similarly, although the 
head movements and facial expressions in a lip-sync deep fake are authentic, this 
manipulation de-synchronizes the mouth from the rest of the head. If, for example, 
a person tends to tilt her head upwards when she smiles, this mannerism may be lost 
in a lip-sync deep fake. 

Underlying this category of techniques is a system that learns distinct facial expressions 
and movements from authentic videos of an individual, and then compares these 
learned mannerisms to the video in question. The advantage of this approach is that 
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the mannerisms are measured over a 5–10 second window consisting of 150–300 video 
frames in a standard video format. Because deep-fake videos are synthesized one (or 
maybe a few) frames at a time, the synthesis engine at time 𝑇 is (for now at least) 
unaware of what is happening at time 𝑇 +150 and beyond. As a result, current synthesis 
engines will struggle to easily circumvent this forensic approach. Compared to learning-
based approaches, the measurement of facial expressions and movement is robust even 
for relatively low video resolution and quality. And, by attacking the fundamental flaw 
of a deep fake—the person depicted is not who it purports to be—these techniques are 
applicable to all forms of deep-fake videos. The disadvantage of these approaches is 
that a model must be constructed for each individual. This may be practical when it 
comes to protecting a few world leaders from deep fakes—for which hours of video 
can typically be found online—but is otherwise impractical. The other disadvantage is 
that the learned mannerisms are somewhat context dependent: when a world leader is 
giving a public address, for example, she may be more formal than when she is giving 
an unscripted interview, so specific mannerisms may not generalize across different 
contexts. 

Video: evaluation. Thanks to a number of industry- and academic-led efforts, several 
datasets are available to evaluate deep-fake video detection, including: 

1. FaceForensics++ (Rossler et al. 2019) consisting of 1,000 YouTube videos of 1,000 
different people, mostly news anchors and video bloggers, from which four types 
of deep-fake videos are created: faceswap17, FaceSwap18, Face2Face (Justus 
Thies et al. 2016), and Neural Textures (Thies, Zollhöfer, and Nießner 2019). 

2. DeepFake Detection dataset (Dufour and Gully 2019) consisting of 363 real and 
3,068 face-swap deep fakes of 28 paid and consenting actors. Each individual 
was made to perform tasks including walking, hugging, talking, etc. in different 
expressions such as happy, angry, neutral, or disgust. 

3. DeepFake Detection Challenge (DFDC) (Dolhansky et al. 2019) consisting of 1,131 
real and 4,113 face-swap deep fakes of 66 paid and consenting actors. 

4. Celeb-DF (Y. Li et al. 2019) dataset consisting of 5,639 face-swap deep fakes 
generated from 590 YouTube videos of 61 celebrities speaking in different settings 
including interviews, TV-shows, and award ceremonies. 

In the 2019–2020 Deepfake Detection Challenge (Ferrer 2020), 2,116 teams competed 
for $1 million in prizes. Teams were provided 23,654 real videos and 104,500 deep-
fake videos created from the provided real videos. The top-performing learning-based 
detector achieved a detection accuracy of only 65% on a set of 4,000 holdout videos, 
half of which were real and half of which were deep fakes (i.e., chance performance is 
50%). Compared to reported detection accuracies greater than 90% in many published 
studies, these results reveal that fully automatic detection of deep fakes remains a 
challenging problem in practice. 

Video: active. During the COVID-19 pandemic, video calls frequently replaced in-
person meetings and phone calls. Although not yet perfected, deep fakes can be 
synthesized in real time and piped through a virtual camera (e.g., https://github.com/ 
alievk/avatarify-python and https://github.com/iperov/DeepFacelive). Despite not yet 
being perfected, this technology is good enough that the mayor of Berlin, Franziska 
Giffey, spent 15 minutes on a video conference call with a deep-fake version of the 
mayor of Kyiv, Vitali Klitschko (Oltermann 2022). It will therefore become increasingly 
difficult to distinguish a real person from a synthesized person on a video call. The 

17. https://github.com/deepfakes/faceswap 
18. https://github.com/MarekKowalski/FaceSwap 

https://github.com/alievk/avatarify-python
https://github.com/alievk/avatarify-python
https://github.com/iperov/DeepFacelive
https://github.com/deepfakes/faceswap
https://github.com/MarekKowalski/FaceSwap
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Figure 8: Shown in the top panel is a visualization of the dynamic change in the hue 
of a uniform-colored area light source (simulating a computer screen). Shown below 
are nine renderings of a 3D model illuminated with a different light-source hue at nine 
distinct moments in time (Gerstner and Farid 2022). 

creation of real-time deep fakes poses unique threats because of the general sense of 
trust surrounding a live video call, and the challenge of detecting deep fakes in real time, 
during a call. 

While some of the computational techniques described above might help detect real-
time deep-fake videos, a class of promising approaches (Shang and Wu 2020; Gerstner 
and Farid 2022) exploits the unique physical constraints of a live video call: call 
participants are in front of a light source (the computer display) that can be actively 
adjusted in real time to induce specific lighting patterns on a user’s face. Shown in 
Figure 8, for example, is a simulation of the change in facial appearance of a person 
sitting in front of a display that is slowly changing color (hue) over time. The consistency 
of a call participant’s appearance under this lighting can then be used to verify their 
liveness and physical presence in front of the camera. This approach is effective 
because either the synthesis engine simply fails to transfer the active illumination or 
there is a temporal delay in transferring the active illumination. 

This illumination pattern can be induced by a call participant sharing her screen and 
displaying a temporally varying pattern, or directly integrated into the video-call client. 
In either case, no specialized imaging or lighting hardware is required. 

6 Detecting: Provenance 

The perceptual and computational techniques described in the two previous sections 
are based on a somewhat unreasonable model: billions of daily users upload hundreds 
of hours of video to YouTube and TikTok every minute, and make hundreds of millions of 
daily tweets and Facebook posts. Billions of daily users are then largely left to their own 
devices to separate fact from fiction, while trying to make sense of a global pandemic, 
national elections, human rights atrocities, and war. It is no wonder we are awash in a 
sea of misinformation, conspiracies, and lies. 

An alternate model would be to shift the responsibility of verification away from 
the content recipient and onto the content creator and publisher—particularly for 
multimedia content (audio, image, and video). In this flipped model, the content creator 
and publisher are responsible for authenticating content from the point of creation and 
edits, through editorial, publishing, and eventual delivery (the so-called glass-to-glass 
pipeline of content creation to delivery). 
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Three separate, but now unified, organizations have been established to formalize this 
new model of content creation and delivery. The Content Authenticity Initiative (CAI)19 

considers the initial content creation, Project Origin20 considers content publication, 
and a third umbrella group, the Coalition for Content Provenance and Authenticity 
(C2PA)21 has unified these efforts through the creation of an end-to-end technical 
specification. 

The CAI was founded in 2019 by Adobe, The New York Times, and Twitter, and now 
includes over 700 members across the technology sector, publishing, NGOs, device 
manufacturers, and academia. Under the CAI, content authentication begins at the 
point of recording where a specialized camera app cryptographically hashes (Preneel 
2010) the recorded content (audio, image, or video) and (optionally) metadata including 
creator identity, date/time, and geo-location. Sensitive to the need to balance content 
authenticity with privacy and security of, for example, photojournalists in high-risk 
areas, the CAI protocol allows creators to select and preserve attribution or remain 
anonymous. The extracted, tamper-evident cryptographic hash is stored alongside any 
other recorded metadata and stored on a centralized trust list (Linn 2000). Although 
the CAI does not use a blockchain (an immutable, decentralized ledger) to store the 
cryptographic hashes, the protocol can be adapted to use a blockchain as in, for 
example, https://www.starlinglab.org/78days. 

Founded in 2020 by the BBC, CBC/Radio Canada, Microsoft, and The New York Times, 
Project Origin picks up where the CAI leaves off. Prior to publication, an Origin-
compliant publisher attaches to a piece of media, metadata consisting of the date, 
source, and description. A cryptographically signed hash of the media and metadata is 
then stored on a trust list. As a consumer views the media, the browser or media player 
compares the extracted signature against the trust list to verify the content provenance. 
Whereas the CAI is focused on verifying the integrity of the underlying media, Origin is 
focused on when, where, and by whom a piece of media was published. 

In 2021, the C2PA unified these two efforts by creating an end-to-end technical 
specification that encompasses the entire publishing pipeline. Released in January 
2022, the open, technical standard (v.1.0) gives creators, publishers, and consumers 
a way to understand the authenticity and provenance of multi-media content. As the 
C2PA continues to focus on creating open standards for provenance and authenticity, 
the CAI and Project Origin focus on advocacy and adoption among their respective 
constituencies. 

A provenance-based approach need not only focus on authentic content. Synthesis 
pipelines can also incorporate the same standard to make downstream identification of 
synthetic media easier. Because the CAI-based provenance information is embedded in 
the content’s metadata, this critical information can easily be stripped from the media. 
An alternate, and more robust, solution would be to embed a unique identifying digital 
watermark directly into the underlying content (Yu et al. 2022). This watermark can 
be baked into the synthesis pipeline so that content can be traced back to a specific 
synthesis engine. 

The advantage of these provenance-based approaches is they can contend with 
internet-scale content creation and consumption. The disadvantage is they will require 
broad adoption by creators, publishers, and social media giants. It seems likely, 
however, that some version of a provenance-based solution, alongside the detection 
schemes described in the previous sections, will be needed help re-establish trust in 

19. https://contentauthenticity.org 
20. https://www.originproject.info 
21. https://c2pa.org 

https://www.starlinglab.org/78days
https://contentauthenticity.org
https://www.originproject.info
https://c2pa.org
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online content. 

7 Closing Thoughts 

Given the rate at which synthetic media has been advancing, this article will likely need 
to be updated in a few years. The underlying synthesis techniques, use and misuse 
cases, and ethical and legal landscape will most likely continue to quickly evolve as we 
enter a world in which reality will become increasingly more difficult to ascertain. While 
there are creative applications to deep-fake technologies, we cannot ignore the threats 
posed by the widespread access to deep-fake synthesis technology and content. I argue 
that today there are three primary threats, two of which are being realized, and the 
third is likely to be more fully realized in the near future. First, non-consensual sexual 
imagery is being weaponized against (primarily) women as many apps and web services 
operationalize deep-fake technology with the explicit purpose of creating this material. 
As this technology improves, anyone with even a minimal online footprint could be a 
victim. Second, the existence of deep fakes enables the liar’s dividend to be wielded 
as a powerful weapon to dismiss inconvenient facts and realities. Third, although still 
nascent, deep fakes are likely to play a larger role in small- to large-scale fraud and 
disinformation campaigns in the future. 

It is more difficult to predict how the courts, and society, will contend with the myriad of 
complex legal and ethical questions arising from deep-fake and related technologies. 
As we wrestle with these issues, academic researchers—the primary driving force of 
deep-fake technology—should consider not just how to do something, but if something 
should be done—and if so, how to put proper safeguards in place before unleashing their 
technologies on the world. 

Recent history can provide some guidance. After decades of research in facial 
recognition, we are now contending with troubling consequences from demonstrated 
racial and gender bias (Buolamwini and Gebru 2018), as well as privacy violations in 
applications like Clearview AI (Roussi 2020). What started out as a mostly academic 
research effort that gave little thought to ethics or consequences has led to the broad 
deployment of biased and privacy-invading technologies without proper safeguards. 
The time to consider potential harms is before, not after, technology is developed and 
deployed. 

While deep fakes are the flavor of the year (or decade), they are not the first—nor 
will they be the last—form of digital manipulation. They are also not currently the 
most dangerous example of the weaponization of the internet, given the long litany of 
online harms including child exploitation, extremism and terrorism, the sale of illegal 
and deadly drugs, small- to large-scale fraud, invasions of privacy, and the spread 
of deadly and dangerous disinformation campaigns designed to sow civil unrest and 
disrupt elections. Deep fakes should therefore be considered within a broader range of 
online harms that are threatening individuals, societies, and democracies. 
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